Particle Filtering for Nonlinear/Non-Gaussian Systems With Energy Harvesting Sensors Subject to Randomly Occurring Sensor Saturations

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Particle Filtering for Nonlinear/Non-Gaussian Systems With Energy Harvesting Sensors Subject to Randomly Occurring Sensor Saturations

By: 
Weihao Song; Zidong Wang; Jianan Wang; Fuad E. Alsaadi; Jiayuan Shan

In this paper, the particle filtering problem is investigated for a class of nonlinear/non-Gaussian systems with energy harvesting sensors subject to randomly occurring sensor saturations (ROSSs). The random occurrences of the sensor saturations are characterized by a series of Bernoulli distributed stochastic variables with known probability distributions. The energy harvesting sensor transmits its measurement output to the remote filter only when the current energy level is sufficient, where the transmission probability of the measurement is recursively calculated by using the probability distribution of the sensor energy level. The effects of the ROSSs and the possible measurement losses induced by insufficient energies are fully considered in the design of filtering scheme, and an explicit expression of the likelihood function is derived. Finally, the numerical simulation examples (including a benchmark example for nonlinear filtering and the applications in moving target tracking problem) are provided to demonstrate the feasibility and effectiveness of the proposed particle filtering algorithm.

SPS Social Media

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel