The technology we use, and even rely on, in our everyday lives –computers, radios, video, cell phones – is enabled by signal processing. Learn More »
1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.
In this paper, the particle filtering problem is investigated for a class of nonlinear/non-Gaussian systems with energy harvesting sensors subject to randomly occurring sensor saturations (ROSSs). The random occurrences of the sensor saturations are characterized by a series of Bernoulli distributed stochastic variables with known probability distributions. The energy harvesting sensor transmits its measurement output to the remote filter only when the current energy level is sufficient, where the transmission probability of the measurement is recursively calculated by using the probability distribution of the sensor energy level. The effects of the ROSSs and the possible measurement losses induced by insufficient energies are fully considered in the design of filtering scheme, and an explicit expression of the likelihood function is derived. Finally, the numerical simulation examples (including a benchmark example for nonlinear filtering and the applications in moving target tracking problem) are provided to demonstrate the feasibility and effectiveness of the proposed particle filtering algorithm.
Home | Sitemap | Contact | Accessibility | Nondiscrimination Policy | IEEE Ethics Reporting | IEEE Privacy Policy | Terms | Feedback
© Copyright 2024 IEEE - All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions.
A public charity, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.