The technology we use, and even rely on, in our everyday lives –computers, radios, video, cell phones – is enabled by signal processing. Learn More »
1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.
Learning optimal dictionaries for sparse coding has exposed characteristic sparse features of many natural signals. However, universal guarantees of the stability of such features in the presence of noise are lacking. Here, we provide very general conditions guaranteeing when dictionaries yielding the sparsest encodings are unique and stable with respect to measurement or modeling error. We demonstrate that some or all original dictionary elements are recoverable from noisy data even if the dictionary fails to satisfy the spark condition, its size is overestimated, or only a polynomial number of distinct sparse supports appear in the data. Importantly, we derive these guarantees without requiring any constraints on the recovered dictionary beyond a natural upper bound on its size. Our results yield an effective procedure sufficient to affirm if a proposed solution to the dictionary learning problem is unique within bounds commensurate with the noise. We suggest applications to data analysis, engineering, and neuroscience and close with some remaining challenges left open by our work.
Home | Sitemap | Contact | Accessibility | Nondiscrimination Policy | IEEE Ethics Reporting | IEEE Privacy Policy | Terms | Feedback
© Copyright 2024 IEEE – All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions.
A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.