IEEE Signal Processing Magazine

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Linear regression models have a wide range of applications in statistics, signal processing, and machine learning. In this Lecture Notes column we will examine the performance of the least-squares (LS) estimator with a focus on the case when there are more parameters than training samples, which is often overlooked in textbooks on estimation.

Apollo 11 was the first manned space mission to successfully bring astronauts to the Moon and return them safely. As part of NASA’s goal in assessing team and mission success, all voice communications within mission control, astronauts, and support staff were captured using a multichannel analog system, which until recently had never been made available. More than 400 personnel served as mission specialists/support who communicated across 30 audio loops, resulting in 9,000+ h of data. It is essential to identify each speaker’s role during Apollo and analyze group communication to achieve a common goal.

A computational experiment is deemed reproducible if the same data and methods are available to replicate quantitative results by any independent researcher, anywhere and at any time, granted that they have the required computing power. Such computational reproducibility is a growing challenge that has been extensively studied among computational researchers as well as within the signal processing and machine learning research community.

Visualizing information inside objects is an everlasting need to bridge the world from physics, chemistry, and biology to computation. Among all tomographic techniques, terahertz (THz) computational imaging has demonstrated its unique sensing features to digitalize multidimensional object information in a nondestructive, nonionizing, and noninvasive way.

Electromagnetic (EM) imaging is widely applied in sensing for security, biomedicine, geophysics, and various industries. It is an ill-posed inverse problem whose solution is usually computationally expensive. Machine learning (ML) techniques and especially deep learning (DL) show potential in fast and accurate imaging. However, the high performance of purely data-driven approaches relies on constructing a training set that is statistically consistent with practical scenarios, which is often not possible in EM-imaging tasks. Consequently, generalizability becomes a major concern.

Thanks to the tremendous interest from the research community, the focus of the March issue of the IEEE Signal Processing Magazine is on the second volume of the special issue on physics-driven machine learning for computational imaging, which brings together nine articles of the 19 accepted papers from the original 47 submissions.

First, I would like to wish you and your loved ones a nice new year filled with health and happiness. The last few years have been challenging for various reasons: the COVID-19 pandemic, climatic events, and the war in Ukraine, to name a few. It seems impossible to be able to stop the megalomania and madness of some human beings.

Recent years have witnessed a rapidly growing interest in next-generation imaging systems and their combination with machine learning. While model-based imaging schemes that incorporate physics-based forward models, noise models, and image priors laid the foundation in the emerging field of computational sensing and imaging, recent advances in machine learning, from large-scale optimization to building deep neural networks, are increasingly being applied in modern computational imaging.

The compressive sensing (CS) scheme exploits many fewer measurements than suggested by the Nyquist–Shannon sampling theorem to accurately reconstruct images, which has attracted considerable attention in the computational imaging community. While classic image CS schemes employ sparsity using analytical transforms or bases, the learning-based approaches have become increasingly popular in recent years. Such methods can effectively model the structure of image patches by optimizing their sparse representations or learning deep neural networks while preserving the known or modeled sensing process. 

At the time of publication, all of the links in this article were operational. However, since we do not host the videos, we have no control over whether or not they will continue to be active. In many cases, similar or related videos can be found by typing the performer’s name in an appropriate search engine.



IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel