IEEE Signal Processing Magazine

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

As humans, we cannot be indifferent to the increasing number of dramatic events taking place in the world: fires, tornadoes, floods, and - recently - the collapse of a huge block of the Marmolada glacier in the Italian Alps. All are clear evidence to the global warming of the Earth.

The July issue of IEEE Signal Processing Magazine (SPM) is a special issue focused on “Explainability in Data Science: Interpretability, Reproducibility, and Replicability.” With increased enthusiasm for machine learning, it is a very timely topic, and I invite every IEEE Signal Processing Society (SPS) member to read these very instructive papers.
While I am writing this column, the Russia–Ukraine war is raging. As bombings, destruction, and human suffering flood the daily news, I deeply feel the pain of our Ukrainian colleagues, those who have friends and family in the affected areas, those who had to put their studies and careers on hold to fight for their survival. I also acknowledge the agony of those around the world who are watching the developments in horror, trying to comprehend why such insanity was necessary.

Hypercomplex signal processing (HSP) provides state-of-the-art tools to handle multidimensional signals by harnessing the intrinsic correlation of the signal dimensions through Clifford algebra. Recently, the hypercomplex representation of the phase retrieval (PR) problem, wherein a complex-valued signal is estimated through its intensity-only projections, has attracted significant interest.

Hypercomplex signal and image processing extends upon conventional methods by using hypercomplex numbers in a unified framework for algebra and geometry. The special issue is divided into two parts and is focused on current advances and applications in computational signal and image processing in the hypercomplex domain.

IEEE SPM Special Issue on the Mathematics of Deep Learning

White Paper Due: 1 November 2024
Publication: November 2025

Inference tasks in signal processing are often characterized by the availability of reliable statistical modeling with some missing instance-specific parameters. One conventional approach uses data to estimate these missing parameters and then infers based on the estimated model. Alternatively, data can also be leveraged to directly learn the inference mapping end to end. These approaches for combining partially known statistical models and data in inference are related to the notions of generative and discriminative models used in the machine learning literature [1] , [2] , typically considered in the context of classifiers.

Quaternions are still largely misunderstood and often considered an “exotic” signal representation without much practical utility despite the fact that they have been around the signal and image processing community for more than 30 years now. The main aim of this article is to counter this misconception and to demystify the use of quaternion algebra for solving problems in signal and image processing. To this end, we propose a comprehensive and objective overview of the key aspects of quaternion representations, models, and methods and illustrate our journey through the literature with flagship applications. We conclude this work by an outlook on the remaining challenges and open problems in quaternion signal and image processing.

Pages

SPS Social Media

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel