IEEE Signal Processing Magazine

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Recent years have witnessed a rapidly growing interest in next-generation imaging systems and their combination with machine learning. While model-based imaging schemes that incorporate physics-based forward models, noise models, and image priors laid the foundation in the emerging field of computational sensing and imaging, recent advances in machine learning, from large-scale optimization to building deep neural networks, are increasingly being applied in modern computational imaging.

The compressive sensing (CS) scheme exploits many fewer measurements than suggested by the Nyquist–Shannon sampling theorem to accurately reconstruct images, which has attracted considerable attention in the computational imaging community. While classic image CS schemes employ sparsity using analytical transforms or bases, the learning-based approaches have become increasingly popular in recent years. Such methods can effectively model the structure of image patches by optimizing their sparse representations or learning deep neural networks while preserving the known or modeled sensing process. 

At the time of publication, all of the links in this article were operational. However, since we do not host the videos, we have no control over whether or not they will continue to be active. In many cases, similar or related videos can be found by typing the performer’s name in an appropriate search engine.

Radio maps characterize quantities of interest in radio communication environments, such as the received signal strength and channel attenuation, at every point of a geographical region. Radio map estimation (RME) typically entails interpolative inference based on spatially distributed measurements. In this tutorial article, after presenting some representative applications of radio maps, the most prominent RME methods are discussed.

Sparse modeling for signal processing and machine learning, in general, has been at the focus of scientific research for over two decades. Among others, supervised sparsity-aware learning (SAL) consists of two major paths paved by 1) discriminative methods that establish direct input–output mapping based on a regularized cost function optimization and 2) generative methods that learn the underlying distributions.

Word art, which is text rendered with properly designed appealing artistic effects, has been a popular form of art throughout human history. Artistic text effects are of great aesthetic value and symbolic significance. Decorating with appropriate effects not only makes text more attractive but also significantly enhances the atmosphere of a scene. Thus, artistic text effects are widely used in publicity and advertising.

Earthquakes have afflicted people throughout history. Today, thanks to advanced technology, more is known about earthquakes, and more can be done to protect people against them. Signal processing is playing a key role as investigators examine ways to combat one of humanity’s most deadly foes.

In addition to the impressive predictive power of machine learning (ML) models, more recently, explanation methods have emerged that enable an interpretation of complex nonlinear learning models, such as deep neural networks. Gaining a better understanding is especially important, e.g., for safety-critical ML applications or medical diagnostics and so on. Although such explainable artificial intelligence (XAI) techniques have reached significant popularity for classifiers, thus far, little attention has been devoted to XAI for regression models (XAIR). 
In many modern data science problems, data are represented by a graph (network), e.g., social, biological, and communication networks. Over the past decade, numerous signal processing and machine learning (ML) algorithms have been introduced for analyzing graph structured data. With the growth of interest in graphs and graph-based learning tasks in a variety of applications, there is a need to explore explainability in graph data science.
Data-driven solutions are playing an increasingly important role in numerous practical problems across multiple disciplines. The shift from the traditional model-driven approaches to those that are data driven naturally emphasizes the importance of the explainability of solutions, as, in this case, the connection to a physical model is often not obvious. Explainability is a broad umbrella and includes interpretability, but it also implies that the solutions need to be complete, in that one should be able to “audit” them, ask appropriate questions, and hence gain further insight about their inner workings.

Pages

SPS Social Media

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel