Skip to main content

IEEE Signal Processing Magazine

Privacy as a Feature for Body-Worn Cameras

Reports on the technology of body worn cameras (BWMs) and discusses the threat to privacy that this passive data collection creates, along with opportunities to mitigate this risk. Furthermore, we argue that the use case of BWCs at work will stimulate the development of solutions that prevent the collection of data that could infringe upon the privacy of the wearer. Finally, we discuss the desirable properties of privacy-enhancing technologies (PETs) for BWCs.

Read more

Communications and Sensing: An Opportunity for Automotive Systems

Like many of you, I am still working remotely, due to COVID-19, while writing this editorial. As in the past two years, I was planning to give an update on the magazine from our editorial board meeting. However, since ICASSP was remote, we have not yet scheduled the board meeting. Instead, I have decided to talk about a topic of personal interest: connections between communications and sensing in the context of vehicular systems.

Read more

The Year of Living Dangerously

I am writing this column on the first official day of spring while “sheltering in place” in Northern California. In these uncertain times, we are all experiencing the anxiety that comes from an unpredictable situation that we do not control; the shock of seeing, perhaps for the first time, all of the shelves in grocery stores empty; and the stress of working, living, and sleeping in the same place.

Read more

An Overview of the MPEG-5 Essential Video Coding Standard

Since the 1970s, various image and video coding techniques have been explored, and some of them have been included in the video coding standards issued by the International Organization for Standardization (ISO)/International Electrotechnical Commission (IEC) Motion Pictures Expert Group (MPEG) and International Telecommunication Union-Telecommunication Standardization Sector (ITU-T) Video Coding Experts Group (VCEG).

Read more

Machine Learning From Distributed, Streaming Data

The field of machine learning has undergone radical transformations during the last decade. These transformations, which have been fueled by our ability to collect and generate tremendous volumes of training data and leverage massive amounts of low-cost computing power, have led to an explosion in research activity in the field by academic and industrial researchers.

Read more