1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.
A significantly low cost and tractable progressive learning approach is proposed and discussed for efficient spatiotemporal monitoring of a completely unknown, two dimensional correlated signal distribution in localized wireless sensor field. The spatial distribution is compressed into a number of its contour lines and only those sensors that their sensor observations are in a margin of the contour levels are reporting to the information fusion center (FC).
Two-directional two-dimensional canonical correlation analysis ((2D) 2 CCA) directly seeks linear relationship between different image data sets without reshaping images into vectors. However, it fails in finding the nonlinear correlation.
Although deep convolutional neural networks (DCNN) show significant improvement for single depth map (SD) super-resolution (SR) over the traditional counterparts, most SDSR DCNNs do not reuse the hierarchical features for depth map SR resulting in blurred high-resolution (HR) depth maps. They always stack convolutional layers to make network deeper and wider.
Many well-known line spectral estimators may experience significant performance loss with noisy measurements. To address the problem, we propose a deep learning denoising based approach for line spectral estimation. The proposed approach utilizes a residual learning assisted denoising convolutional neural network (DnCNN) trained to recover the unstructured noise component, which is used to denoise the original measurements.
Submission Deadline: March 15, 2020
Call for Proposals Document
Lecture Date: December 10, 2019
Chapter: Seattle
Chapter Chair: Adam Loper
Topic: A Joint Auditory Attention Decoding and Adaptive Beamforming
Optimization Approach for the Challenging Cocktail Party Problem
Over the decades, multiple approaches have been proposed to solve convex programs. The development of interior-point methods allowed solving a more general set of convex programs known as semi-definite and second-order cone programs. However, these methods are excessively slow for high dimensions.
This paper presents the probability hypothesis density filter (PHD) and the cardinality PHD (CPHD) filter for sets of trajectories, which are referred to as the trajectory PHD (TPHD) and trajectory CPHD (TCPHD) filters. Contrary to the PHD/CPHD filters, the TPHD/TCPHD filters are able to produce trajectory estimates from first principles.
Polar codes have gained extensive attention during the past few years and recently they have been selected for the next generation of wireless communications standards (5G). Successive-cancellation-based (SC-based) decoders, such as SC list (SCL) and SC flip (SCF), provide a reasonable error performance for polar codes at the cost of low decoding speed.
In this paper, we design and implement a new on-line portfolio selection strategy based on reversion mechanism and weighted on-line learning. Our strategy, called “Gaussian Weighting Reversion” (GWR), improves the reversion estimator to form optimal portfolios and effectively overcomes the shortcomings of existing on-line portfolio selection strategies.
Recently, a novel method for developing filtering algorithms, based on the interconnection of two Bayesian filters and called double Bayesian filtering, has been proposed. In this manuscript we show that the same conceptual approach can be exploited to devise a new smoothing method, called double Bayesian smoothing.