1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.
We introduce an efficient synthetic electrode selection strategy for use in Adaptive Electrical Capacitance Volume Tomography (AECVT). The proposed strategy is based on the Adaptive Relevance Vector Machine (ARVM) method and allows to successively obtain synthetic electrode configurations that yield the most decrease in the image reconstruction uncertainty for the spatial distribution of the permittivity in the region of interest.
In this paper, we explore the spatiospectral image super-resolution (SSSR) task, i.e., joint spatial and spectral super-resolution, which aims to generate a high spatial resolution hyperspectral image (HR-HSI) from a low spatial resolution multispectral image (LR-MSI). To tackle such a severely ill-posed problem, one straightforward but inefficient way is to sequentially perform a single image super-resolution (SISR) network followed by a spectral super-resolution (SSR) network in a two-stage manner or reverse order.
Conventional digital cameras typically accumulate all the photons within an exposure period to form a snapshot image. It requires the scene to be quite still during the imaging time, otherwise it would result in blurry image for the moving objects. Recently, a retina-inspired spike camera has been proposed and shown great potential for recording high-speed motion scenes. Instead of capturing the visual scene by a single snapshot, the spike camera records the dynamic light intensity variation continuously.
In this work, a new nonlinear framework is presented for superior reconstructions in ultrasound-modulated optical tomography. The framework is based on minimizing a functional comprising of least squares data fitting term along with additional sparsity priors that promote high contrast, subject to the photon-propagation diffusion equation. The resulting optimization problem is solved using a sequential quadratic Hamiltonian scheme, based on the Pontryagin’s maximum principle, that does not involve semi-smooth calculus and is easy to implement.
This paper addresses the target localization problem using time-of-arrival (TOA)-based technique under the non-line-of-sight (NLOS) environment. To alleviate the adverse effect of the NLOS error on localization, a total least square framework integrated with a regularization term (RTLS) is utilized, and with which the localization problem can get rid of the ill-posed issue. However, it is challenging to figure out the exact solution for the considered localization problem.
Deep neural networks in deep learning have been widely demonstrated to have higher accuracy and distinct advantages over traditional machine learning methods in extracting data features. While convolutional neural networks (CNNs) have shown great success in feature extraction and audio classification, it is important to note that real-time audios are dependent on previous scenes. Also, the main drawback of deep learning algorithms is that they need a huge number of datasets to indicate their efficient performance.
In this letter, we propose a novel linguistic steganographic method that directly conceals a token-level secret message in a seemingly-natural steganographic text generated by the off-the-shelf BERT model equipped with Gibbs sampling. Compared with all modification based linguistic steganographic methods, the proposed method does not modify a given cover text. Instead, the proposed method utilizes the secret message to directly generate the steganographic text.
Discriminative correlation filter (DCF)-based methods applied for UAV object tracking have received widespread attention due to their high efficiency. However, these methods are usually troubled by the boundary effect. Besides, the violent environment variations severely confuse trackers that neglect temporal environmental changes among consecutive frames, leading to unwanted tracking drift. In this letter, we propose a novel DCF-based tracking method to promote the insensitivity of the tracker under uncertain environmental changes.
Audio-guided face reenactment aims to generate authentic target faces that have matched facial expression of the input audio, and many learning-based methods have successfully achieved this. However, most methods can only reenact a particular person once trained or suffer from the low-quality generation of the target images. Also, nearly none of the current reenactment works consider the model size and running speed that are important for practical use.
In this paper, we propose an enhancing steganographic scheme by random generation and ensemble stego selection. Different from existing steganography that only focuses on distortion function designing, our scheme considers both distortion model and optimized stego generation. In specific, for given cover, we firstly train an universal steganalyzer to calculate its gradient map, which is referenced to randomly adjust cost distribution of this cover.
Date: November 29 - December 2, 2022
Location: Hybrid - Madrid, Spain
Date: September 5-7, 2022
Location: Lippstadt, Germany
Date: 12-16 December 2022
Location: Virtual (Formerly Shanghai, China)
CFP document
Postdoctoral research position:
Localisation of the Mozilla Common Voice platform for South African languages
Stellenbosch University, South Africa
A full professor position is opened in Statistical Signal Processing at University Paris-Saclay and L2S, France.
Teaching
Teaching in signal processing in the Bachelor and Master programs in Electrical Engineering (E3A) of the Faculté des Sciences d’Orsay, and occasionally, in the engineering program of Polytech Paris-Saclay.
Pedagogical goals and needs for training
Decentralized stochastic gradient descent (SGD) is a driving engine for decentralized federated learning (DFL). The performance of decentralized SGD is jointly influenced by inter-node communications and local updates. In this paper, we propose a general DFL framework, which implements both multiple local updates and multiple inter-node communications periodically, to strike a balance between communication efficiency and model consensus.
Given a sequence of random (directed and weighted) graphs, we address the problem of online monitoring and detection of changes in the underlying data distribution. Our idea is to endow sequential change-point detection (CPD) techniques with a graph representation learning substrate based on the versatile Random Dot Product Graph (RDPG) model. We consider efficient, online updates of a judicious monitoring function, which quantifies the discrepancy between the streaming graph observations and the nominal RDPG.
Due to their effectiveness in capturing similarities between different entities, graphical models are widely used to represent datasets that reside on irregular and complex manifolds. Graph signal processing offers support to handle such complex datasets. In this paper, we propose a novel graph filter design method for semi-supervised data classification.
In this paper, the joint state and fault estimation problem is investigated for a class of discrete-time complex networks with measurement saturations and stochastic nonlinearities. The difference between the actual measurement and the saturated measurement is regarded as an unknown input and the system is thus re-organized as a singular system. An appropriate estimator is designed for each node which aims to estimate the system states and the loss of the actuator effectiveness simultaneously.
Presentation of the activities and context of the position:
Télécom SudParis is recruiting an Assistant or Associate Professor in Statistical Signal Processing. The strategic objective of recruitment is to meet the demand for training for specialists in the theory and application of signal processing in the fast-growing fields of data science, signal processing, information theory, and digital communications.