1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.
We propose Coordinate-based Internal Learning (CoIL) as a new deep-learning (DL) methodology for continuous representation of measurements. Unlike traditional DL methods that learn a mapping from the measurements to the desired image, CoIL trains a multilayer perceptron (MLP) to encode the complete measurement field by mapping the coordinates of the measurements to their responses. CoIL is a self-supervised method that requires no training examples besides the measurements of the test object itself.
The perception of one’s own voice influences the acceptance of hearing devices, such as headphones, headsets or hearing aids. When these devices fully or partially occlude the ear canal, the wearer’s own voice sounds boomy or like talking in a barrel. This is called occlusion effect . Occluding the ear canal results in an amplification of body-conducted sounds, mainly at low frequencies, and an attenuation of air-conducted sounds, predominantly at high frequencies, compared to the open ear.
Transcribing structural data into readable text (data-to-text) is a fundamental language generation task. One of its challenges is to plan the input records for text realization. Recent works tackle this problem with a static planner, which performs record planning in advance for text realization. However, they cannot revise plans to cope with unexpected realized text and require golden plans for supervised training. To address these issues, we first propose a model that contains a dynamic planner.
We present a scalable and efficient neural waveform coding system for speech compression. We formulate the speech coding problem as an autoencoding task, where a convolutional neural network (CNN) performs encoding and decoding as a neural waveform codec (NWC) during its feedforward routine. The proposed NWC also defines quantization and entropy coding as a trainable module, so the coding artifacts and bitrate control are handled during the optimization process.
Automatically solving math word problems is a critical task in the field of natural language processing. Recent models have reached their performance bottleneck and require more high-quality data for training. We propose a novel data augmentation method that reverses the mathematical logic of math word problems to produce new high-quality math problems and introduce new knowledge points that can benefit learning the mathematical reasoning logic.
Visual place recognition is one of the essential and challenging problems in the fields of robotics. In this letter, we for the first time explore the use of multi-modal fusion of semantic and visual modalities in dynamics-invariant space to improve place recognition in dynamic environments. We achieve this by first designing a novel deep learning architecture to generate the static semantic segmentation and recover the static image directly from the corresponding dynamic image.
In this letter, we consider Bayesian parameterestimation using mixed-resolution data consisting of both analog and 1-bit quantized measurements. We investigate the use of the partially linear minimum mean-squared-error (PL-MMSE) estimator for this mixed-resolution scheme. The use of the PL-MMSE estimator, proposed for general models with “straightforward” and “complicated” parts, has not been demonstrated for quantized data.