Fan, Bin. Michigan State University, (2017)

You are here

Inside Signal Processing Newsletter Home Page

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

10 years of news and resources for members of the IEEE Signal Processing Society

Fan, Bin. Michigan State University, (2017)

Fan, Bin. Michigan State University, (2017) "Polycrystalline diamond based neural interface for optogenetics and neurotransmitter detection" advisor: Wen Li

Neural interface forms a communication bridge between a human brain and external circuitries, which enables promising bioelectronics medicines for diseases treatments, such as inflammatory bowel disease, Alzheimer's disease, and restore sensorimotor function lost due to traumatic brain, spinal cord injury, and amputations. Neurons in the central nervous systems communicate with each other electrically along the axon from soma to dendrite and chemically between neuron to neuron in the synapses through release and uptake of neurotransmitters. In particular, dopamine (DA) is one of the most important neurotransmitters, which associates with many aspects of the neurophysiological processing, such as stress, memory, and addiction.

External stimulation is desired to study the dynamics of DA release and uptake and its correlation to the animal behavioral changes. Previously, electrical stimulation was used as a neuromodulation technique for such purpose, which can cause a significant amount of nondopaminergic system activation and result in consequential neurological activities or dynamics not related to DA release[1]. Recent advances in optogenetics provide a unique neuromodulation technique, allowing optical control of genetically targeted specific neurons that express light-sensitive opsin proteins with sub-millisecond temporal precision. Utilizing the cell-type specificity of Optogenetics, researchers can have a more controlled manipulation of the dopaminergic system and have an unbiased study on DA related neurological diseases.

The current engineering tools for Optogenetics use laser and micro light emitting diodes (μLEDs) as the light sources, where μLEDs show great promises with respect to device miniaturization, simplicity, low power and low cost of system implementation. However, using μLEDs as a light source can cause potential thermally-induced tissue damage due to µLED Joule heating. To address the localized Joule heating issue, a μLED based optrode was developed in this thesis using polycrystalline diamond as a heat spreader due to its very high thermal conductivity. Compared with an SU8 probe with the same dimensions, a diamond probe can reduce the maximum temperature variations by ~90% at 3.6V 100ms duration pulses. The functionality of the probe was tested in vivo, where light-evoked action potentials were successfully detected.

Besides the very high thermal conductivity, diamond has unique features for neurotransmitter sensing, such as a larger potential window, low background current and resistance to surface fouling. In addition, diamond is a biocompatible and chemically inert material, which enables long-term device implantation. Therefore, above mentioned properties make diamond a promising candidate for Optogenetics and neurotransmitter detection. However, diamond is a rigid material and the micromotion-induced strain has been hypothesized to be the main cause of harmful immune responses and even irreversible tissue damage. Due to the process temperature intolerant, diamond cannot synthesis onto polymer substrates directly. To address this issue, a wafer-level substrate transfer process is first time proposed to transfer all diamond macro/micro patterns from a diamond growth substrate, silicon, onto a flexible Parylene substrate. The electrochemical properties of the transferred diamond-polymer electrodes were evaluated (i) using an outer sphere redox couple to study the electron transfer process and (ii) quantitative and qualitative studies of a neurotransmitter redox dopamine/dopamine-o-quinone. A linear response of the BDD sensor to dopamine concentrations of 0.5 µM to 100 µM was observed (R^2 = 0.999) with a sensitivity of 0.21 µA/cm^2˙µM.

SPS on Twitter

  • now accepting submissions for special sessions, tutorials, and papers! The conference is set for June 2… https://t.co/sB3o5ItL0j
  • DEADLINE EXTENDED: The IEEE Journal of Selected Topics in Signal Processing is now accepting papers for a Special I… https://t.co/2SJwqj7aDB
  • NEW WEBINAR: Join us on Friday, 14 August at 11:00 AM ET for the 2021 SPS Membership Preview! Society leadership wi… https://t.co/1PLaZIt2VQ
  • CALL FOR PAPERS: The 2020 IEEE Workshop on Spoken Language Technology is now accepting papers for its January 2021… https://t.co/48604jm3zc
  • CALL FOR PAPERS: The 2020 IEEE International Workshop on Information Forensics and Security is now accepting submis… https://t.co/p9q7UvKgmT

SPS Videos


Signal Processing in Home Assistants

 


Multimedia Forensics


Careers in Signal Processing             

 


Under the Radar