SPS Blog Post: An Echo in Time: Tracing the Evolution of Beamforming Algorithms

You are here

Inside Signal Processing Newsletter Home Page

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

News and Resources for Members of the IEEE Signal Processing Society

SPS Blog Post: An Echo in Time: Tracing the Evolution of Beamforming Algorithms

By: 
Ahmet M. Elbir, Kumar Vijay Mishra, Sergiy A. Vorobyov, and Robert W. Heath, Jr.

SPS Blog Post: August 2023

Contributed by Ahmet M. Elbir, Kumar Vijay Mishra, Sergiy A. Vorobyov and Robert W. Heath, Jr., based on the IEEEXplore® article, “Twenty-Five Years of Advances in Beamforming: From convex and nonconvex optimization to learning techniques,” published in the 75th Anniversary Edition of the IEEE Signal Processing Magazine in June 2023, and the 75th Anniversary Webinar with the same title, available on the SPS Resource Center.

Introduction

Beamforming is a widely used signal processing technique that exploits arrays of sensors improve one of many possible application-driven performance objectives [1]. It finds applications in several engineering applications such as radar, sonar, wireless communications, acoustics, astronomy, seismology, and medical imaging. Recent advances in mobile communications, usage of large arrays, high-frequency sensors, near-field signal recovery, and smart radio environments have opened interesting and novel signal processing problems in beamforming (Fig. 1). This post summarizes the evolution of beamforming algorithms as encapsulated in our recent article “Twenty-Five Years of Advances in Beamforming: From convex and nonconvex optimization to learning techniques” published in the IEEE Signal Processing Magazine.

Figure 1.
Figure 1. Major classes of beamforming techniques by (a) transmission range: far and near fields; (b) transceiver architectures: analog, digital, and hybrid beamforming; (c) paths: line-of-sight (LoS) and and non-LoS (NLoS) beamforming, wherein the NLoS path is controlled via joint active (transmitter) and passive (intelligent reflecting surface) devices; (d) applications: radar, communications, and joint radar-communications.

 

> Read the Full Blog Post on the SPS Blog

SPS Social Media

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel