Editorial: Introduction to the Issue Index Modulation for Future Wireless Networks: A Signal Processing Perspective

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Editorial: Introduction to the Issue Index Modulation for Future Wireless Networks: A Signal Processing Perspective

By: 
Editorial

The last few years have witnessed a tremendous growth of the demand for wireless services and a significant increase of the number of mobile subscribers. A recent data traffic forecast from Cisco reported that the global mobile data traffic reached 1.2 zettabytes per year in 2016, and the global IP traffic will increase nearly threefold over the next 5 years. Based on these predictions, a 127-fold increase of the IP traffic is expected from 2005 to 2021. It is also anticipated that the mobile data traffic will reach 3.3 zettabytes per year by 2021, and that the number of mobile-connected devices will reach 3.5 per capita.

With such demands for higher data rates and for better quality of service (QoS), fifth generation (5G) standardization initiatives, whose initial phase was specified in June 2018 under the umbrella of Long Term Evolution (LTE) Release 15, have been under vibrant investigation. In particular, the International Telecommunication Union (ITU) has identified three usage scenarios (service categories) for 5G wireless networks: (i) enhanced mobile broadband (eMBB), (ii) ultra-reliable and low latency communications (uRLLC), and (iii) massive machine type communications (mMTC). The vast variety of applications for beyond 5G wireless networks has motivated the necessity of novel and more flexible physical layer (PHY) technologies, which are capable of providing higher spectral and energy efficiencies, as well as reduced transceiver implementations.

SPS Social Media

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel