Exploiting Spatial-Wideband Effect for Fast AoA Estimation at Lens Antenna Array

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Exploiting Spatial-Wideband Effect for Fast AoA Estimation at Lens Antenna Array

By: 
Kai Wu; Wei Ni; Tao Su; Ren Ping Liu; Y. Jay Guo

Energy-efficient, highly integrated lens antenna arrays (LAAs) have found widespread applications in wideband millimeter wave or terahertz communications, localization and tracking, and wireless power transfer. Accurate estimation of angle-of-arrival (AoA) is key to those applications, but has been hindered by a spatial-wideband effect in wideband systems. This paper proposes to exploit (rather than circumventing) the spatial-wideband effect to develop a fast and accurate AoA estimation approach for LAAs. Specifically, we unveil new spatial-frequency patterns based on the spatial-wideband effect, and establish one-to-one mappings between the patterns and the strongest discrete Fourier transform (DFT) beam containing the AoA. With the strongest DFT beam identified, we propose a method to estimate the AoA uniquely and accurately, using only a few training symbols. This is achieved by deriving a new one-to-one mapping between the AoA and the set of DFT beams judiciously selected based on the strongest. In the case that an impinging path is uniformly distributed in [0,2π] , simulations show that the proposed algorithm is able to reduce the mean squared error of the AoA estimation by as much as  82.1 % while reducing the number of required symbols by  93.2 %, as compared to existing techniques. The algorithm can also increase the spectral efficiency by  89 % when the average SNR is 20  dB at each antenna of the receiver.

SPS on Twitter

  • Our Biomedical Imaging and Signal Processing Webinar Series continues on Tuesday, 5 July when Michael Unser present… https://t.co/7bYh8ZPHI0
  • Join us TODAY at 11:00 AM ET when the Brain Space Initiative Talk Series continues with Dr. Tianming Liu presenting… https://t.co/MEfnzk6dAE
  • Our 75th anniversary is approaching in 2023, and we're celebrating with a Special Issue of IEEE Signal Processing M… https://t.co/U6UNv8kLSO
  • The SPS Webinar Series continues on Monday, 20 June when Dr. Zhijin Qin presents "Semantic Communications: Principl… https://t.co/FhI7aP3GLi
  • CALL FOR PROPOSALS: Now seeking proposals for the 2024 IEEE International Workshop on Machine Learning for Signal P… https://t.co/Stt6OG2qo7

SPS Videos


Signal Processing in Home Assistants

 


Multimedia Forensics


Careers in Signal Processing             

 


Under the Radar