Exploiting Spatial-Wideband Effect for Fast AoA Estimation at Lens Antenna Array

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Exploiting Spatial-Wideband Effect for Fast AoA Estimation at Lens Antenna Array

By: 
Kai Wu; Wei Ni; Tao Su; Ren Ping Liu; Y. Jay Guo

Energy-efficient, highly integrated lens antenna arrays (LAAs) have found widespread applications in wideband millimeter wave or terahertz communications, localization and tracking, and wireless power transfer. Accurate estimation of angle-of-arrival (AoA) is key to those applications, but has been hindered by a spatial-wideband effect in wideband systems. This paper proposes to exploit (rather than circumventing) the spatial-wideband effect to develop a fast and accurate AoA estimation approach for LAAs. Specifically, we unveil new spatial-frequency patterns based on the spatial-wideband effect, and establish one-to-one mappings between the patterns and the strongest discrete Fourier transform (DFT) beam containing the AoA. With the strongest DFT beam identified, we propose a method to estimate the AoA uniquely and accurately, using only a few training symbols. This is achieved by deriving a new one-to-one mapping between the AoA and the set of DFT beams judiciously selected based on the strongest. In the case that an impinging path is uniformly distributed in [0,2π] , simulations show that the proposed algorithm is able to reduce the mean squared error of the AoA estimation by as much as  82.1 % while reducing the number of required symbols by  93.2 %, as compared to existing techniques. The algorithm can also increase the spectral efficiency by  89 % when the average SNR is 20  dB at each antenna of the receiver.

SPS on Twitter

  • SPS is now accepting nominations for several positions, including three Members-at-Large and two Regional Directors… https://t.co/y3z8Sp9Zrt
  • Many of our events, including and , have been or are in the process of being transitioned to f… https://t.co/0HDofTO8Ul
  • DEADLINE EXTENDED: The 2020 IEEE Statistical Signal Processing Workshop has extended their paper submission deadlin… https://t.co/w8lsBJupn8
  • The IEEE Journal on Selected Topics in Signal Processing welcomes submissions for a Special Issue on Reconstruction… https://t.co/YsgqicXDeu
  • SPS is now accepting proposals for Winter 2020-2021 schools. Head to our website for more information: https://t.co/RkI0Ipkqi2

SPS Videos


Signal Processing in Home Assistants

 


Multimedia Forensics


Careers in Signal Processing             

 


Under the Radar