The technology we use, and even rely on, in our everyday lives –computers, radios, video, cell phones – is enabled by signal processing. Learn More »
1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.
Energy-efficient, highly integrated lens antenna arrays (LAAs) have found widespread applications in wideband millimeter wave or terahertz communications, localization and tracking, and wireless power transfer. Accurate estimation of angle-of-arrival (AoA) is key to those applications, but has been hindered by a spatial-wideband effect in wideband systems. This paper proposes to exploit (rather than circumventing) the spatial-wideband effect to develop a fast and accurate AoA estimation approach for LAAs. Specifically, we unveil new spatial-frequency patterns based on the spatial-wideband effect, and establish one-to-one mappings between the patterns and the strongest discrete Fourier transform (DFT) beam containing the AoA. With the strongest DFT beam identified, we propose a method to estimate the AoA uniquely and accurately, using only a few training symbols. This is achieved by deriving a new one-to-one mapping between the AoA and the set of DFT beams judiciously selected based on the strongest. In the case that an impinging path is uniformly distributed in
Home | Sitemap | Contact | Accessibility | Nondiscrimination Policy | IEEE Ethics Reporting | IEEE Privacy Policy | Terms | Feedback
© Copyright 2024 IEEE - All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions.
A public charity, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.