NOMA for Hybrid mmWave Communication Systems With Beamwidth Control

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

NOMA for Hybrid mmWave Communication Systems With Beamwidth Control

Zhiqiang Wei; Derrick Wing Kwan Ng; Jinhong Yuan

In this paper, we propose a novel non-orthogonal multiple access (NOMA) scheme with beamwidth control for hybrid millimeter wave communication systems and study the resource allocation design to maximize the system energy efficiency. In particular, NOMA transmission allows more than one user to share a single radio frequency chain, which is beneficial to enhance the system energy efficiency. More importantly, the proposed beamwidth control can increase the number of served NOMA groups by widening the beamwidth that can further exploit the energy efficiency gain brought by NOMA. To this end, two beamwidth control methods, based on the conventional beamforming and the Dolph–Chebyshev beamforming, respectively, are proposed. We first characterize the main lobe power losses due to the two beamwidth control methods and propose an effective analog beamformer design to minimize the power loss. Then, we formulate the energy-efficient resource allocation design as a non-convex optimization problem, which takes into account the minimum required user data rate. A NOMA user grouping algorithm based on the coalition formation game theory is developed and a low-complexity iterative digital precoder design is proposed to achieve a locally optimal solution utilizing the quadratic transformation. Simulation results verify the fast convergence and effectiveness of our proposed algorithms. In addition, our results demonstrate the superior energy efficiency achieved by our proposed beamwidth controlling NOMA scheme compared to the conventional orthogonal multiple access and NOMA schemes without beamwidth control.

SPS on Twitter

  • Join us on Friday, 21 May at 1:00 PM EST when Dr. Amir Asif (York University) shares his journey and the importance…
  • There's still time to apply for PROGRESS! Visit to connect with signal processing leaders a…
  • This Saturday, 8 May, join the SPS JSS Academy of Technical Education Noida Student Branch Chapter in collaboration…
  • The SPACE Webinar Series continues this Tuesday, 4 May at 10:00 AM Eastern when Dr. Lei Tian presents "Modeling and…
  • The second annual IEEE SIGHT Day will take place on 28 April! This year’s theme is “Celebrating 10 years of IEEE SI…

SPS Videos

Signal Processing in Home Assistants


Multimedia Forensics

Careers in Signal Processing             


Under the Radar