Interplay Between Topology and Social Learning Over Weak Graphs

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Interplay Between Topology and Social Learning Over Weak Graphs

By: 
Vincenzo Matta; Virginia Bordignon; Augusto Santos; Ali H. Sayed

This work examines a distributed learning problem where the agents of a network form their beliefs about certain hypotheses of interest. Each agent collects streaming (private) data and updates continually its belief by means of a diffusion strategy, which blends the agent’s data with the beliefs of its neighbors. We focus on weakly-connected graphs, where the network is partitioned into sending and receiving sub-networks, and we allow for heterogeneous models across the agents. First, we examine what agents learn (social learning) and provide an analytical characterization for the long-term beliefs at the agents. Among other effects, the analysis predicts when a leader-follower behavior is possible, where some sending agents control the beliefs of the receiving agents by forcing them to choose a particular and possibly fake hypothesis. Second, we consider the dual or reverse learning problem that reveals how agents learn: given the beliefs collected at a receiving agent, we would like to discover the influence that any sending sub-network might have exerted on this receiving agent (topology learning). An unexpected interplay between social and topology learning emerges: given H hypotheses and S sending sub-networks, topology learning can be feasible when H ≥ S. The latter being only a necessary condition, we then examine the feasibility of topology learning for two useful classes of problems. The analysis reveals that a critical element to enable topology learning is a sufficient degree of diversity in the statistical models of the sending sub-networks. 

SPS on Twitter

  • SPS WEBINAR: Join us on Tuesday, 2 August for a new SPS Webinar, when Dr. Yue Li presents "Learning a Convolutional… https://t.co/Eps90ySYzq
  • Registration for ICIP 2021 is now open! This hybrid event will take place 19-22 September, with the in-person compo… https://t.co/s3kiGP4EPh
  • The Brain Space Initiative Talk Series continues on Friday, 30 July when Dr. Ioulia Kovelman presents "The Bilingua… https://t.co/6EqwqmBD0Q
  • There’s still time to register your team to win the US$5,000 grand prize in the 5-Minute Video Clip Contest, “Autom… https://t.co/76kh4jeL6i
  • Join the SPS Vizag Bay, Long Island, and Finland Chapters for the Seasonal School on Signal Processing and Communic… https://t.co/l04xac8qP5

SPS Videos


Signal Processing in Home Assistants

 


Multimedia Forensics


Careers in Signal Processing             

 


Under the Radar