Interplay Between Topology and Social Learning Over Weak Graphs
This work examines a distributed learning problem where the agents of a network form their beliefs about certain hypotheses of interest. Each agent collects streaming (private) data and updates continually its belief by means of a diffusion strategy, which blends the agent’s data with the beliefs of its neighbors. We focus on weakly-connected graphs, where the network is partitioned into sending and receiving sub-networks, and we allow for heterogeneous models across the agents.