Skip to main content

OJSP Volume 1 | 2020

Interplay Between Topology and Social Learning Over Weak Graphs

This work examines a distributed learning problem where the agents of a network form their beliefs about certain hypotheses of interest. Each agent collects streaming (private) data and updates continually its belief by means of a diffusion strategy, which blends the agent’s data with the beliefs of its neighbors. We focus on weakly-connected graphs, where the network is partitioned into sending and receiving sub-networks, and we allow for heterogeneous models across the agents.

Read more

Learning Over Multitask Graphs - Part I: Stability Analysis

This paper formulates a multitask optimization problem where agents in the network have individual objectives to meet, or individual parameter vectors to estimate, subject to a smoothness condition over the graph. The smoothness condition softens the transition in the tasks among adjacent nodes and allows incorporating information about the graph structure into the solution of the inference problem.

Read more

Incremental Learning Based Adaptive Filter for Nonlinear Distributed Active Noise Control System

Active control of noise for multi-channel applications is affected by the existence of nonlinear primary and secondary paths. There is a degradation in the performance of linear multi-channel active noise control (LMANC) systems based on minimization of sum of squared errors obtained from multiple sensors in presence of nonlinear primary path (NPP) and nonlinear secondary path (NSP) conditions.

Read more