Sparsest Univariate Learning Models Under Lipschitz Constraint

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Sparsest Univariate Learning Models Under Lipschitz Constraint

Shayan Aziznejad;Thomas Debarre; Michael Unser

Beside the minimizationof the prediction error, two of the most desirable properties of a regression scheme are stability and interpretability . Driven by these principles, we propose continuous-domain formulations for one-dimensional regression problems. In our first approach, we use the Lipschitz constant as a regularizer, which results in an implicit tuning of the overall robustness of the learned mapping. In our second approach, we control the Lipschitz constant explicitly using a user-defined upper-bound and make use of a sparsity-promoting regularizer to favor simpler (and, hence, more interpretable) solutions. The theoretical study of the latter formulation is motivated in part by its equivalence, which we prove, with the training of a Lipschitz-constrained two-layer univariate neural network with rectified linear unit (ReLU) activations and weight decay. By proving representer theorems, we show that both problems admit global minimizers that are continuous and piecewise-linear (CPWL) functions. Moreover, we propose efficient algorithms that find the sparsest solution of each problem: the CPWL mapping with the least number of linear regions. Finally, we illustrate numerically the outcome of our formulations.

SPS on Twitter

  • On 15 September 2022, we are excited to partner with and to bring you a webinar and roundtable,…
  • The SPS Webinar Series continues on Monday, 22 August when Dr. Yu-Huan Wu and Dr. Shanghua Gao present “Towards Des…
  • CALL FOR PAPERS: The IEEE/ACM Transactions on Audio, Speech, and Language Processing is now accepting submissions f…
  • DEADLINE EXTENDED: The IEEE Journal of Selected Topics in Signal Processing is now accepting submissions for a Spec…
  • Our Information Forensics and Security Webinar Series continues on Tuesday, 23 August when Dr. Anderson Rocha prese…

SPS Videos

Signal Processing in Home Assistants


Multimedia Forensics

Careers in Signal Processing             


Under the Radar