TCI Volume 5 Issue 3

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

August, 2019

TCI Volume 5 Issue 3

Resolution enhancements are often desired in imaging applications where high-resolution sensor arrays are difficult to obtain. Many computational imaging methods have been proposed to encode high-resolution scene information on low-resolution sensors by cleverly modulating light from the scene before it hits the sensor. 

Dictionary learning for sparse representations is generally conducted in two alternating steps-sparse coding and dictionary updating. In this paper, a new approach to solve the sparse coding step is proposed. Because this step involves an 0 -norm, most, if not all, existing solutions only provide a local or approximate solution. Instead, a real 0 optimization is considered for the sparse coding problem providing a global solution. 

Coded illumination can enable quantitative phase microscopy of transparent samples with minimal hardware requirements. Intensity images are captured with different source patterns, then a nonlinear phase retrieval optimization reconstructs the image. The nonlinear nature of the processing makes optimizing the illumination pattern designs complicated. 

SPS on Twitter

SPS Videos


Signal Processing in Home Assistants

 


Multimedia Forensics


Careers in Signal Processing             

 


Under the Radar