Semi-Supervised Structured Subspace Learning for Multi-View Clustering

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Semi-Supervised Structured Subspace Learning for Multi-View Clustering

Yalan Qin; Hanzhou Wu; Xinpeng Zhang; Guorui Feng

Multi-view clustering aims at simultaneously obtaining a consensus underlying subspace across multiple views and conducting clustering on the learned consensus subspace, which has gained a variety of interest in image processing. In this paper, we propose the Semi-supervised Structured Subspace Learning algorithm for clustering data points from Multiple sources (SSSL-M). We explicitly extend the traditional multi-view clustering with a semi-supervised manner and then build an anti-block-diagonal indicator matrix with small amount of supervisory information to pursue the block-diagonal structure of the shared affinity matrix. SSSL-M regularizes multiple view-specific affinity matrices into a shared affinity matrix based on reconstruction through a unified framework consisting of backward encoding networks and the self-expressive mapping. The shared affinity matrix is comprehensive and can flexibly encode complementary information from multiple view-specific affinity matrices. An enhanced structural consistency of affinity matrices from different views can be achieved and the intrinsic relationships among affinity matrices from multiple views can be effectively reflected in this manner. Technically, we formulate the proposed model as an optimization problem, which can be solved by an alternating optimization scheme. Experimental results over seven different benchmark datasets demonstrate that better clustering results can be obtained by our method compared with the state-of-the-art approaches.

SPS on Twitter

  • DEADLINE EXTENDED: The 2023 IEEE International Workshop on Machine Learning for Signal Processing is now accepting…
  • ONE MONTH OUT! We are celebrating the inaugural SPS Day on 2 June, honoring the date the Society was established in…
  • The new SPS Scholarship Program welcomes applications from students interested in pursuing signal processing educat…
  • CALL FOR PAPERS: The IEEE Journal of Selected Topics in Signal Processing is now seeking submissions for a Special…
  • Test your knowledge of signal processing history with our April trivia! Our 75th anniversary celebration continues:…

SPS Videos

Signal Processing in Home Assistants


Multimedia Forensics

Careers in Signal Processing             


Under the Radar