Soft Video Multicasting Using Adaptive Compressed Sensing

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Soft Video Multicasting Using Adaptive Compressed Sensing

By: 
Hadi Hadizadeh; Ivan V. Bajić

Recently, soft video multicasting has gained a lot of attention, especially in broadcast and mobile scenarios where the bit rate supported by the channel may differ across receivers, and may vary quickly over time. Unlike the conventional designs that force the source to use a single bit rate according to the receiver with the worst channel quality, soft video delivery schemes transmit the video such that the video quality at each receiver is commensurate with its specific instantaneous channel quality. In this paper, we present a soft video multicasting system using an adaptive block-based compressed sensing (BCS) method. The proposed system consists of an encoder, a transmission system, and a decoder. At the encoder side, each block in each frame of the input video is adaptively sampled with a rate that depends on the texture complexity and visual saliency of the block. The obtained BCS samples are then placed into several packets, and the packets are transmitted via a channel-aware OFDM (orthogonal frequency division multiplexing) transmission system with a number of subchannels. At the decoder side, the received BCS samples are first used to build an initial approximation of the transmitted frame. To further improve the reconstruction quality, an iterative BCS reconstruction algorithm is then proposed that uses an adaptive transform and an adaptive soft-thresholding operator, which exploits the temporal similarity between adjacent frames to achieve better reconstruction quality. The extensive objective and subjective experimental results indicate the superiority of the proposed system over the state-of-the-art soft video multicasting systems.

SPS on Twitter

  • The Brain Space Initiative Talk Series continues this Friday, 24 September at 11:00 AM EDT when Dr. Jessica Damoise… https://t.co/DHFOzEXvMJ
  • The 2022 membership year has begun! Join our community of more than 17,000 signal processing and data science profe… https://t.co/arfJKa0oaW
  • Join us this Tuesday, 21 September for the Women in Signal Processing event at ICIP 2021! Registration available on… https://t.co/hXXZ61zLBe
  • The SPACE Webinar Series continues this Tuesday, 21 September when Dr. Bin Dong presents "Data- and Task-Driven CT… https://t.co/dkwz0lb2Jk
  • Join SPS President Ahmed Tewfik on Wednesday, 22 September for the IEEE Signal Processing Society Town Hall in conj… https://t.co/31AOCWXvam

SPS Videos


Signal Processing in Home Assistants

 


Multimedia Forensics


Careers in Signal Processing             

 


Under the Radar