Bilinear Recovery Using Adaptive Vector-AMP

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Bilinear Recovery Using Adaptive Vector-AMP

By: 
Subrata Sarkar; Alyson K. Fletcher; Sundeep Rangan; Philip Schniter

We consider the problem of jointly recovering the vector b and the matrix C from noisy measurementsY=A(b)C+W , where A() is a known affine linear function of b (i.e., A(b)=A0 +Qi=1biAi with known matrices Ai ). This problem has applications in matrix completion, robust PCA, dictionary learning, self-calibration, blind deconvolution, joint-channel/symbol estimation, compressive sensing with matrix uncertainty, and many other tasks. To solve this bilinear recovery problem, we propose the Bilinear Adaptive Vector Approximate Message Passing (VAMP) algorithm. We demonstrate numerically that the proposed approach is competitive with other state-of-the-art approaches to bilinear recovery, including lifted VAMP and Bilinear Generalized Approximate Message Passing.

Table of Contents:

TSP Featured Articles

SPS on Twitter

  • We are happy to welcome Prof. Jiebo Luo as the new Editor-in-Chief of IEEE Transactions on Multimedia beginning in… https://t.co/9ZgBrgkFXv
  • wants your talents! Our tenure-track position in engineering applications of information and data science a… https://t.co/QrqTAFGlyM
  • If you’re missing out on , don’t worry - we’ll be tweeting all week long. Follow along with us to see the action!

SPS Videos


Signal Processing in Home Assistants

 


Multimedia Forensics


Careers in Signal Processing             

 


Under the Radar