Bilinear Recovery Using Adaptive Vector-AMP

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Bilinear Recovery Using Adaptive Vector-AMP

Subrata Sarkar; Alyson K. Fletcher; Sundeep Rangan; Philip Schniter

We consider the problem of jointly recovering the vector b and the matrix C from noisy measurementsY=A(b)C+W , where A() is a known affine linear function of b (i.e., A(b)=A0 +Qi=1biAi with known matrices Ai ). This problem has applications in matrix completion, robust PCA, dictionary learning, self-calibration, blind deconvolution, joint-channel/symbol estimation, compressive sensing with matrix uncertainty, and many other tasks. To solve this bilinear recovery problem, we propose the Bilinear Adaptive Vector Approximate Message Passing (VAMP) algorithm. We demonstrate numerically that the proposed approach is competitive with other state-of-the-art approaches to bilinear recovery, including lifted VAMP and Bilinear Generalized Approximate Message Passing.

SPS on Twitter

  • now accepting submissions for special sessions, tutorials, and papers! The conference is set for June 2…
  • DEADLINE EXTENDED: The IEEE Journal of Selected Topics in Signal Processing is now accepting papers for a Special I…
  • NEW WEBINAR: Join us on Friday, 14 August at 11:00 AM ET for the 2021 SPS Membership Preview! Society leadership wi…
  • CALL FOR PAPERS: The 2020 IEEE Workshop on Spoken Language Technology is now accepting papers for its January 2021…
  • CALL FOR PAPERS: The 2020 IEEE International Workshop on Information Forensics and Security is now accepting submis…

SPS Videos

Signal Processing in Home Assistants


Multimedia Forensics

Careers in Signal Processing             


Under the Radar