Data Shuffling in Wireless Distributed Computing via Low-Rank Optimization

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Data Shuffling in Wireless Distributed Computing via Low-Rank Optimization

By: 
Kai Yang; Yuanming Shi; Zhi Ding

Intelligent mobile platforms such as smart vehicles and drones have recently become the focus of attention for onboard deployment of machine learning mechanisms to enable low latency decisions with low risk of privacy breach. However, most such machine learning algorithms are both computation-and-memory intensive, which makes it highly difficult to implement the requisite computations on a single device of limited computation, memory, and energy resources. Wireless distributed computing presents new opportunities by pooling the computation and storage resources among devices. For low-latency applications, the key bottleneck lies in the exchange of intermediate results among mobile devices for data shuffling . To improve communication efficiency, we propose a co-channel communication model and design transceivers by exploiting the locally computed intermediate values as side information. A low-rank optimization model is proposed to maximize the achieved degrees-of-freedom (DoF) by establishing the interference alignment condition for data shuffling. Unfortunately, existing approaches to approximate the rank function fail to yield satisfactory performance due to the poor structure in the formulated low-rank optimization problem. In this paper, we develop an efficient difference-of-convex-functions (DC) algorithm to solve the presented low-rank optimization problem by proposing a novel DC representation for the rank function. Numerical experiments demonstrate that the proposed DC approach can significantly improve the communication efficiency whereas the achievable DoF almost remains unchanged when the number of mobile devices grows.

SPS on Twitter

  • Registration is now live for the 2020 IEEE 6th World Forum on Internet of Things! Meet attendees from industry, the… https://t.co/1T7vQhAazS
  • Early bird registration for ends on Monday, 24 February. Register today and save, and save even more with… https://t.co/dzlSXdN4y8
  • The IEEE Journal of Selected Topics in Signal Processing is now accepting original manuscripts for a Special Issue… https://t.co/mXKh41of5A
  • Join us on Tuesday, 25 February for a new webinar, “Enabling Identity-Based Integrity Auditing and Data Sharing Wit… https://t.co/rfpjVkEv09
  • The 2020 IEEE International Conference on Autonomous Systems will take place in Montréal on 12-14 August 2020 and w… https://t.co/ePFEWYagwP

SPS Videos


Signal Processing in Home Assistants

 


Multimedia Forensics


Careers in Signal Processing             

 


Under the Radar