TASLP Featured Articles

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

TASLP Featured Articles

Nonlinear acoustic echo cancellation (AEC) is a highly challenging task in a single-microphone; hence, the AEC technique with a microphone array has also been considered to more effectively reduce the residual echo. However, these algorithms track only a linear acoustic path between the loudspeaker and the microphone array. 

In this paper, we present an algorithm to estimate the relative acoustic transfer function (RTF) of a target source in wireless acoustic sensor networks (WASNs). Two well-known methods to estimate the RTF are the covariance subtraction (CS) method and the covariance whitening (CW) approach, the latter based on the generalized eigenvalue decomposition. 

Lexical-based metrics such as BLEU, NIST, and WER have been widely used in machine translation (MT) evaluation. However, these metrics badly represent semantic relationships and impose strict identity matching, leading to moderate correlation with human judgments. In this paper, we propose a novel MT automatic evaluation metric Semantic Travel Distance (STD) based on word embeddings. STD incorporates both semantic and lexical features (word embeddings and n -gram and word order) into one metric.

Previous studies have shown that attention mechanisms and shortest dependency paths have a positive effect on relation classification. In this paper, a keyword-attentive sentence mechanism is proposed to effectively combine the two methods. Furthermore, to effectively handle the imbalanced classification problem, this paper proposes a new loss function called the synthetic stimulation loss , which uses a modulating factor to allow the model to focus on hard-to-classify samples.

Dialogue policy plays an important role in task-oriented spoken dialogue systems. It determines how to respond to users. The recently proposed deep reinforcement learning (DRL) approaches have been used for policy optimization. However, these deep models are still challenging for two reasons: first, many DRL-based policies are not sample efficient; and second, most models do not have the capability of policy transfer between different domains.

This paper addresses the problem of multichannel online dereverberation. The proposed method is carried out in the short-time Fourier transform (STFT) domain, and for each frequency band independently. In the STFT domain, the time-domain room impulse response is approximately represented by the convolutive transfer function (CTF).

While substantial noise reduction and speech enhancement can be achieved with multiple microphones organized in an array, in some cases, such as when the microphone spacings are quite close, it can also be quite limited. This degradation can, however, be resolved by the introduction of one or more external microphones ( XM s) into the same physical space as the local microphone array ( LMA ). 

We introduce the multiple enrollment scheme for SRAM-physical unclonable functions (PUFs). During each enrollment, the binary power-on values of the SRAM are observed, and a corresponding key and helper data are generated. Each key can later be reconstructed from an additional observation and the helper data.

There are a number of studies about extraction of bottleneck (BN) features from deep neural networks (DNNs) trained to discriminate speakers, pass-phrases, and triphone states for improving the performance of text-dependent speaker verification (TD-SV). However, a moderate success has been achieved.

Single-channel, speaker-independent speech separation methods have recently seen great progress. However, the accuracy, latency, and computational cost of such methods remain insufficient. The majority of the previous methods have formulated the separation problem through the time–frequency representation of the mixed signal, which has several drawbacks, including the decoupling of the phase...


SPS on Twitter

SPS Videos

Signal Processing in Home Assistants


Multimedia Forensics

Careers in Signal Processing             


Under the Radar