IEEE Signal Processing Letters

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Iterative hard thresholding (IHT) and hard thresholding pursuit (HTP) are two kinds of classical hard thresholding-based algorithms widely used in compressed sensing. Restricted isometry constant (RIC) of sensing matrix which ensures the convergence of iterative algorithms plays a key role in guaranteeing successful recovery. In the analysis of sufficient condition to ensure recovery performance, the RIC δ3s is generally used in previous literature, while δ2s is rarely addressed. In this letter, we first show that the theoretical optimal step-length is 1 while using sufficient condition in terms of δ2s .

The correlation filter(CF)-based tracker is a classic and effective model in the field of visual tracking. For a long time, most CF-based trackers solved filters using only ridge regression equations with l2 -norm, which can make the trained model noisy and not sparse. As a result, we propose a model of adaptive sparse spatially-regularized correlation filters (AS2RCF). Aiming to suppress the noise mixed in the model, we improve it by introducing an l1 -norm spatial regularization term. 

Image registration is a basic task in computer vision, for its wide potential applications in image stitching, stereo vision, motion estimation, and etc. Most current methods achieve image registration by estimating a global homography matrix between candidate images with point-feature-based matching or direct prediction. However, as real-world 3D scenes have point-variant photograph distances (depth), a unified homography matrix is not sufficient to depict the specific pixel-wise relations between two images.

Adversarial attack approaches to speaker identification either need high computational cost or are not very effective, to our knowledge. To address this issue, in this letter, we propose a novel generation-network-based approach, called symmetric saliency-based encoder-decoder (SSED), to generate adversarial voice examples to speaker identification.

A key challenge of image splicing detection is how to localize integral tampered regions without false alarm. Although current forgery detection approaches have achieved promising performance, the integrality and false alarm are overlooked. In this paper, we argue that the insufficient use of splicing boundary is a main reason for poor accuracy. To tackle this problem, we propose an Edge-enhanced Transformer (ET) for tampered region localization. Specifically, to capture rich tampering traces, a two-branch edge-aware transformer is built to integrate the splicing edge clues into the forgery localization network, generating forgery features and edge features.

In this letter, we propose a novel solution to the problem of single image super-resolution at multiple scaling factors, with a single network architecture. In applications where only a detail needs to be super-resolved, traditional solutions must choose to use as input either the low-resolution detail, thus losing the information about the context, or the whole low-resolution image and then crop the desired output detail, which is quite wasteful in terms of computations and storage. 

Active reconfigurable intelligent surfaces (RISs) are a novel and promising technology that allows controlling the radio propagation environment while compensating for the product path loss along the RIS-assisted path. In this letter, we consider the classical radar detection problem and propose to use an active RIS to get a second independent look at a prospective target illuminated by the radar transmitter.

Recent years have witnessed remarkable success of Graph Fourier Transform (GFT) in point cloud attribute compression. Existing researches mainly utilize geometry distance to define graph structure for coding attribute (e.g., color), which may distribute high weights to the edges connecting points across texture boundaries. 

This paper addresses the target localization problem using time-of-arrival (TOA)-based technique under the non-line-of-sight (NLOS) environment. To alleviate the adverse effect of the NLOS error on localization, a total least square framework integrated with a regularization term (RTLS) is utilized, and with which the localization problem can get rid of the ill-posed issue. However, it is challenging to figure out the exact solution for the considered localization problem.

Deep neural networks in deep learning have been widely demonstrated to have higher accuracy and distinct advantages over traditional machine learning methods in extracting data features. While convolutional neural networks (CNNs) have shown great success in feature extraction and audio classification, it is important to note that real-time audios are dependent on previous scenes. Also, the main drawback of deep learning algorithms is that they need a huge number of datasets to indicate their efficient performance.

Pages

SPS Social Media

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel