1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.
We present a general nonlinear Bayesian filter for high-dimensional state estimation using the theory of reproducing kernel Hilbert space (RKHS). By applying the kernel method and the representer theorem to perform linear quadratic estimation in a functional space, we derive a Bayesian recursive state estimator for a general nonlinear dynamical system in the original input space. Unlike existing nonlinear extensions of the Kalman filter where the system dynamics are assumed known, the state-space representation for the Functional Bayesian Filter (FBF) is completely learned online from measurement data in the form of an infinite impulse response (IIR) filter or recurrent network in the RKHS, with universal approximation property.
In this paper, we propose CE-BASS, a particle mixture Kalman filter which is robust to both innovative and additive outliers, and able to fully capture multi-modality in the distribution of the hidden state. Furthermore, the particle sampling approach re-samples past states, which enables CE-BASS to handle innovative outliers which are not immediately visible in the observations, such as trend changes.
Time-of-arrival (TOA) based localization plays a central role in current and future localization systems. Such systems, exploiting the fine delay resolution properties of wideband and ultra-wideband (UWB) signals, are particularly attractive for ranging under harsh propagation conditions in which significant multipath may be present. While multipath has been traditionally considered detrimental in the design of TOA estimators, it can be exploited to benefit ranging.
Target detection is studied for a cloud multiple-input multiple-output (MIMO) radar using quantized measurements. According to the local sensor quantization strategies and fusion strategies, this paper discusses three methods: quantize local test statistics which are linearly fused (QTLF), quantize local test statistics which are optimally fused (QTOF), and quantize local received signals which are optimally fused (QROF).
Deep learning-based blind image deblurring plays an essential role in solving image blur since all existing kernels are limited in modeling the real world blur. Thus far, researchers focus on powerful models to handle the deblurring problem and achieve decent results. For this work, in a new aspect, we discover the great opportunity for image enhancement (e.g., deblurring) directly from RAW images and investigate novel neural network structures benefiting RAW-based learning.
The pedestrian attribute recognition aims at generating the structured description of pedestrian, which plays an important role in surveillance. However, it is difficult to achieve accurate recognition results due to diverse illumination, partial body occlusion and limited resolutions. Therefore, this paper proposes a comprehensive relationship framework for comprehensively describing and utilizing relations among attributes, describing different type of relations in the same dimension, and implementing complex transfers of relations in a GCN manner.
In this paper, we present LensCast, a novel cross-layer video transmission framework for wireless networks, which seamlessly integrates millimeter wave (mmWave) lens multiple-input multiple-output (MIMO) with robust video transmission. LensCast is designed to exploit the video content diversity at the application layer, together with the spatial path diversity of lens antenna array at the physical layer, to achieve graceful video transmission performance under varying channel conditions.
Low light images suffer from a low dynamic range and severe noise due to low signal-to-noise ratio (SNR). In this paper, we propose joint contrast enhancement and noise reduction of low light images via just-noticeable-difference (JND) transform. We adopt the JND transform to achieve both contrast enhancement and noise reduction based on human visual perception.
Omnidirectional video, also known as 360-degree video, has become increasingly popular nowadays due to its ability to provide immersive and interactive visual experiences. However, the ultra high resolution and the spherical observation space brought by the large spherical viewing range make omnidirectional video distinctly different from traditional 2D video. To date, the video quality assessment (VQA) for omnidirectional video is still an open issue
Superpixel provides local pixel coherence and respects object boundary, which is beneficial to stereo matching. Recently, superpixel cues are introduced into deep stereo networks. These methods develop a superpixel-based sampling scheme to downsample input color images and upsample output disparity maps. However, in this way, the image details are inevitably lost in the downsampling and the upsampling process introduces errors in the final disparity as well. Besides, this mechanism further limits the possibility of utilizing larger and multi-scale superpixels, which are important to alleviate the matching ambiguity.
We introduce an efficient synthetic electrode selection strategy for use in Adaptive Electrical Capacitance Volume Tomography (AECVT). The proposed strategy is based on the Adaptive Relevance Vector Machine (ARVM) method and allows to successively obtain synthetic electrode configurations that yield the most decrease in the image reconstruction uncertainty for the spatial distribution of the permittivity in the region of interest.
In this paper, we explore the spatiospectral image super-resolution (SSSR) task, i.e., joint spatial and spectral super-resolution, which aims to generate a high spatial resolution hyperspectral image (HR-HSI) from a low spatial resolution multispectral image (LR-MSI). To tackle such a severely ill-posed problem, one straightforward but inefficient way is to sequentially perform a single image super-resolution (SISR) network followed by a spectral super-resolution (SSR) network in a two-stage manner or reverse order.
Conventional digital cameras typically accumulate all the photons within an exposure period to form a snapshot image. It requires the scene to be quite still during the imaging time, otherwise it would result in blurry image for the moving objects. Recently, a retina-inspired spike camera has been proposed and shown great potential for recording high-speed motion scenes. Instead of capturing the visual scene by a single snapshot, the spike camera records the dynamic light intensity variation continuously.
In this work, a new nonlinear framework is presented for superior reconstructions in ultrasound-modulated optical tomography. The framework is based on minimizing a functional comprising of least squares data fitting term along with additional sparsity priors that promote high contrast, subject to the photon-propagation diffusion equation. The resulting optimization problem is solved using a sequential quadratic Hamiltonian scheme, based on the Pontryagin’s maximum principle, that does not involve semi-smooth calculus and is easy to implement.
This paper addresses the target localization problem using time-of-arrival (TOA)-based technique under the non-line-of-sight (NLOS) environment. To alleviate the adverse effect of the NLOS error on localization, a total least square framework integrated with a regularization term (RTLS) is utilized, and with which the localization problem can get rid of the ill-posed issue. However, it is challenging to figure out the exact solution for the considered localization problem.
Deep neural networks in deep learning have been widely demonstrated to have higher accuracy and distinct advantages over traditional machine learning methods in extracting data features. While convolutional neural networks (CNNs) have shown great success in feature extraction and audio classification, it is important to note that real-time audios are dependent on previous scenes. Also, the main drawback of deep learning algorithms is that they need a huge number of datasets to indicate their efficient performance.
In this letter, we propose a novel linguistic steganographic method that directly conceals a token-level secret message in a seemingly-natural steganographic text generated by the off-the-shelf BERT model equipped with Gibbs sampling. Compared with all modification based linguistic steganographic methods, the proposed method does not modify a given cover text. Instead, the proposed method utilizes the secret message to directly generate the steganographic text.
Discriminative correlation filter (DCF)-based methods applied for UAV object tracking have received widespread attention due to their high efficiency. However, these methods are usually troubled by the boundary effect. Besides, the violent environment variations severely confuse trackers that neglect temporal environmental changes among consecutive frames, leading to unwanted tracking drift. In this letter, we propose a novel DCF-based tracking method to promote the insensitivity of the tracker under uncertain environmental changes.
Audio-guided face reenactment aims to generate authentic target faces that have matched facial expression of the input audio, and many learning-based methods have successfully achieved this. However, most methods can only reenact a particular person once trained or suffer from the low-quality generation of the target images. Also, nearly none of the current reenactment works consider the model size and running speed that are important for practical use.
In this paper, we propose an enhancing steganographic scheme by random generation and ensemble stego selection. Different from existing steganography that only focuses on distortion function designing, our scheme considers both distortion model and optimized stego generation. In specific, for given cover, we firstly train an universal steganalyzer to calculate its gradient map, which is referenced to randomly adjust cost distribution of this cover.