The technology we use, and even rely on, in our everyday lives –computers, radios, video, cell phones – is enabled by signal processing. Learn More »
1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.
News and Resources for Members of the IEEE Signal Processing Society
Alex Sheng-Yuan Wang (University of British Columbia, Canada):
“Meta level tracking with stochastic grammar,” August 2009.
Advised by Prof. Vikram Krishnamurthy
The ability to learn about a stochastic process from noisy observations is fundamental to many applications. In order to track a dynamic process, typical knowledge representation is the state space model such as a linear Gauss Markov model, where efficient algorithms exist to perform state estimation under many different model assumptions. However, for meta level tracking, we are not only interested in the state estimation, but also temporal and structural classification of the process. Current models that are widely applied in classifying sequential data are mainly Markov models, but they are not only restrictive in the patterns that they can express, they often require state space that grows exponentially in the length of the observation. The solution presented in the thesis is to apply a more expressive and general model than Markov models to characterize the sequential process; the prior knowledge of the sequential process is to be encoded as a declarative language using stochastic context free grammar (SCFG). The objective of the thesis is to formulate a meta level tracking framework, introduce and analyze the use of SCFG as the knowledge representation model, and discuss properties and algorithms involved in two real applications: 1) electronic support measure against a multifunction radar, and 2) ground surveillance with ground moving target indicator radar.
Click here to access the thesis or contact the author.
Nomination/Position | Deadline |
---|---|
Call for Proposals: 2025 Cycle 1 Seasonal Schools & Member Driven Initiatives in Signal Processing | 17 November 2024 |
Call for Nominations: IEEE Technical Field Awards | 15 January 2025 |
Nominate an IEEE Fellow Today! | 7 February 2025 |
Call for Nominations for IEEE SPS Editors-in-Chief | 10 February 2025 |
Home | Sitemap | Contact | Accessibility | Nondiscrimination Policy | IEEE Ethics Reporting | IEEE Privacy Policy | Terms | Feedback
© Copyright 2024 IEEE - All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions.
A public charity, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.