The technology we use, and even rely on, in our everyday lives –computers, radios, video, cell phones – is enabled by signal processing. Learn More »
1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.
News and Resources for Members of the IEEE Signal Processing Society
Thomas C. Null (Mississippi State University), “Novel techniques for processing data with an FMCW radar”, Advisor: Prof. Roger L. King (2013)
This dissertation examines and analyzes novel techniques that are useful in the collection and processing of data from a Frequency Modulated Continuous Wave Radar. The major topics discussed in this work are: reduction of amplitude modulation, signature collection without an anechoic chamber, transforming a signature into a matched filter, accounting for electromagnetic interference, accounting for digital noise, and the application of a Support Vector Machine to achieve classification.
In addition, this work also provides a broad overview of a framework specifically developed to improve detection and classification without requiring expensive hardware modification. The four main categories analyzed in this work are distortion, spectral signature, optimal detection, and classification. Some notable contributions in this work include the assessment of a novel technique's effectiveness to improve model accuracy by accounting for amplitude modulation in an FMCW radar, as well as discussion of improved techniques to perform signature collection with an FMCW radar in the absence of an anechoic chamber. The signature collection technique is a novel approach that utilizes physics and wavelets in an effort to improve Signal to Noise Ratio (SNR). This work also considers a novel technique to convert an FMCW target signature into coefficients for a matched filter, thus allowing for the full mathematical application of the optimal matched filter. In addition, this work provides an analysis of the improved performance of an FMCW radar through the development and use of a novel technique to account for both electromagnetic interference and digital noise. Finally the initial discovery, development, and refinement of an innovative application using SVM to classify the matched filter results of FMCW radar targets is given, thus resulting in previously uncollected and undocumented viable baseline data.
For details, please contact the author or visit the thesis page.
Home | Sitemap | Contact | Accessibility | Nondiscrimination Policy | IEEE Ethics Reporting | IEEE Privacy Policy | Terms | Feedback
© Copyright 2024 IEEE – All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions.
A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.