The technology we use, and even rely on, in our everyday lives –computers, radios, video, cell phones – is enabled by signal processing. Learn More »
1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.
News and Resources for Members of the IEEE Signal Processing Society
The health care industry may seem the ideal place to deploy artificial intelligence systems. Each medical test, doctor’s visit, and procedure is documented, and patient records are increasingly stored in electronic formats. AI systems could digest that data and draw conclusions about how to provide better and more cost-effective care. Plenty of researchers are building such systems: Medical and computer science journals are full of articles describing experimental AIs that can parse records, scan images, and produce diagnoses and predictions about patients’ health. However, few—if any—of these systems have made their way into hospitals and clinics.
So what’s the holdup? It’s not technical, says Shinjini Kundu, a medical researcher and physician at the University of Pittsburgh School of Medicine. “The barrier is the trust aspect,” she says. “You may have a technology that works, but how do you get humans to use it and rely on it?”
Most medical AI systems operate as “black boxes” that take in data and spit out answers. Doctors are understandably wary about basing treatments on reasoning they don’t understand, so researchers are trying a variety of techniques to create systems that show their work. The paper Making Medical AI Trustworthy published by IEEE Spectrum in August 2018 give us some points on Researchers works trying to crack open the black box of AI so it can be deployed in health care.
Nomination/Position | Deadline |
---|---|
Submit Your Papers for ICASSP 2026! | 17 September 2025 |
Call for Nominations: Awards Board, Industry Board and Nominations & Elections Committee | 19 September 2025 |
Meet the 2025 Candidates: IEEE President-Elect | 1 October 2025 |
Call for proposals: 2027 IEEE Conference on Artificial Intelligence (CAI) | 1 October 2025 |
Take Part in the 2025 Low-Resource Audio Codec (LRAC) Challenge | 1 October 2025 |
Call for Nominations for the SPS Chapter of the Year Award | 15 October 2025 |
Call for Papers for 2026 LRAC Workshop | 22 October 2025 |
Submit a Proposal for ICASSP 2030 | 31 October 2025 |
Call for Project Proposals: IEEE SPS SigMA Program - Signal Processing Mentorship Academy | 2 November 2025 |
Home | Sitemap | Contact | Accessibility | Nondiscrimination Policy | IEEE Ethics Reporting | IEEE Privacy Policy | Terms | Feedback
© Copyright 2025 IEEE - All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions.
A public charity, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.