Multirate Frequency Transformations: Wideband AM-FM Demodulation with Applications to Signal Processing and Communications

You are here

Inside Signal Processing Newsletter Home Page

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

News and Resources for Members of the IEEE Signal Processing Society

Multirate Frequency Transformations: Wideband AM-FM Demodulation with Applications to Signal Processing and Communications

Liu, Wenjing

Advisor: Santhanam, Balu


The AM-FM (amplitude & frequency modulation) signal model finds numerous applications in image processing, communications, and speech processing. The traditional approaches towards demodulation of signals in this category are the analytic signal approach, frequency tracking, or the energy operator approach. These approaches however, assume that the amplitude and frequency components are slowly time-varying, e.g., narrowband and incur significant demodulation error in the wideband scenarios. In this thesis, we extend a two-stage approach towards wideband AM-FM demodulation that combines multirate frequency transformations (MFT) enacted through a combination of multirate systems with traditional demodulation techniques, e.g., the Teager-Kasiser energy operator demodulation (ESA) approach to large wideband to narrowband conversion factors.

The MFT module comprises of multirate interpolation and heterodyning and converts the wideband AM-FM signal into a narrowband signal, while the demodulation module such as ESA demodulates the narrowband signal into constituent amplitude and frequency components that are then transformed back to yield estimates for the wideband signal.

This MFT-ESA approach is then applied to the various problems of: (a) wideband image demodulation and fingerprint demodulation, where multidimensional energy separation is employed, (b) wideband first-formant demodulation in vowels, and (c) wideband CPM demodulation with partial response signaling, to demonstrate its validity in both monocomponent and multicomponent scenarios as an effective multicomponent AM-FM signal demodulation and analysis technique for image processing, speech processing, and communications based applications.



IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel