Skip to main content

TIFS Volume 15 | 2020

Decentralized Detection With Robust Information Privacy Protection

We consider a decentralized detection network whose aim is to infer a public hypothesis of interest. However, the raw sensor observations also allow the fusion center to infer private hypotheses that we wish to protect. We consider the case where there are an uncountable number of private hypotheses belonging to an uncertainty set, and develop local privacy mappings at every sensor so that the sanitized sensor information minimizes the Bayes error of detecting the public hypothesis at the fusion center while achieving information privacy for all private hypotheses. 

Read more