Skip to main content

TSP Articles

<p>TSP Articles</p>

Filtering in Pairwise Markov Model With Student's t Non-Stationary Noise With Application to Target Tracking

Hidden Markov models are widely used for target tracking, where the process and measurement noises are usually modeled as independent Gaussian distributions for mathematical simplicity. However, the independence and Gaussian assumptions do not always hold in practice. For example, in a typical target tracking application, a radar is utilized to track a non-cooperative target. 

Read more

An Efficient Forecasting Approach to Reduce Boundary Effects in Real-Time Time-Frequency Analysis

Time-frequency (TF) representations of time series are intrinsically subject to the boundary effects. As a result, the structures of signals that are highlighted by the representations are garbled when approaching the boundaries of the TF domain. In this paper, for the purpose of real-time TF information acquisition of nonstationary oscillatory time series, we propose a numerically efficient approach for the reduction of such boundary effects.

Read more

Particle Filtering for Nonlinear/Non-Gaussian Systems With Energy Harvesting Sensors Subject to Randomly Occurring Sensor Saturations

In this paper, the particle filtering problem is investigated for a class of nonlinear/non-Gaussian systems with energy harvesting sensors subject to randomly occurring sensor saturations (ROSSs). The random occurrences of the sensor saturations are characterized by a series of Bernoulli distributed stochastic variables with known probability distributions.

Read more

Statistical Inference for the Expected Utility Portfolio in High Dimensions

In this paper, using the shrinkage-based approach for portfolio weights and modern results from random matrix theory we construct an effective procedure for testing the efficiency of the expected utility (EU) portfolio and discuss the asymptotic behavior of the proposed test statistic under the high-dimensional asymptotic regime, namely when the number of assets p increases at the same rate as the sample size n such that their ratio p/n approaches a positive constant c(0,1) as n . 

Read more