Online and Stable Learning of Analysis Operators

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Online and Stable Learning of Analysis Operators

By: 
Michael Sandbichler, Karin Schnass

In this paper, four iterative algorithms for learning analysis operators are presented. They are built upon the same optimization principle underlying both Analysis K-SVD and Analysis SimCO. The forward and sequential analysis operator learning (AOL) algorithms are based on projected gradient descent with optimally chosen step size. The implicit AOL algorithm is inspired by the implicit Euler scheme for solving ordinary differential equations and does not require to choose a step size. The fourth algorithm, singular value AOL, uses a similar strategy as Analysis K-SVD while avoiding its high computational cost. All algorithms are proven to decrease or preserve the target function in each step and a characterization of their stationary points is provided. Further they are tested on synthetic and image data, compared to Analysis SimCO and found to give better recovery rates and faster decay of the objective function, respectively. In a final denoising experiment the presented algorithms are again shown to perform similar to or better than the state-of-the-art algorithm ASimCO.

SPS Social Media

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel