The technology we use, and even rely on, in our everyday lives –computers, radios, video, cell phones – is enabled by signal processing. Learn More »
1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.
We consider the problem of stochastic optimization with nonlinear constraints, where the decision variable is not vector-valued but instead a function belonging to a reproducing Kernel Hilbert Space (RKHS). Currently, there exist solutions to only special cases of this problem. To solve this constrained problem with kernels, we first generalize the Representer Theorem to a class of saddle-point problems defined over RKHS. Then, we develop a primal-dual method which that executes alternating projected primal/dual stochastic gradient descent/ascent on the dual-augmented Lagrangian of the problem. The primal projection sets are low-dimensional subspaces of the ambient function space, which are greedily constructed using matching pursuit. By tuning the projection-induced error to the algorithm step-size, we are able to establish mean convergence in both primal objective sub-optimality and constraint violation, to respective
Home | Sitemap | Contact | Accessibility | Nondiscrimination Policy | IEEE Ethics Reporting | IEEE Privacy Policy | Terms | Feedback
© Copyright 2024 IEEE - All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions.
A public charity, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.