Skip to main content

TASLPRO Articles

Modified Magnitude-Phase Spectrum Information for Spoofing Detection

Most of the existing feature representations for spoofing countermeasures consider information either from the magnitude or phase spectrum. We hypothesize that both magnitude and phase spectra can be beneficial for spoofing detection (SD) when collectively used to capture the signal artifacts. In this work, we propose a novel feature referred to as modified magnitude-phase spectrum (MMPS) to capture both magnitude and phase information from the speech signal. 

Read more

Passive Geometry Calibration for Microphone Arrays Based on Distributed Damped Newton Optimization

Geometry calibration is an inherent challenge in distributed acoustic sensor networks. To mitigate this problem, a passive geometry calibration approach based on distributed damped Newton optimization is proposed. Specifically, a geometric cost function incorporating direction of arrivals (DoAs) and time difference of arrivals (TDoAs) is first formulated, and then its identifiability conditions are given.

Read more

Novel Architectures for Unsupervised Information Bottleneck Based Speaker Diarization of Meetings

Speaker diarization is an important problem that is topical, and is especially useful as a preprocessor for conversational speech related applications. The objective of this article is two-fold: (i) segment initialization by uniformly distributing speaker information across the initial segments, and (ii) incorporating speaker discriminative features within the unsupervised diarization framework. In the first part of the work, a varying length segment initialization technique for Information Bottleneck (IB) based speaker diarization system using phoneme rate as the side information is proposed. This initialization distributes speaker information uniformly across the segments and provides a better starting point for IB based clustering. 

Read more

Hierarchical Regulated Iterative Network for Joint Task of Music Detection and Music Relative Loudness Estimation

One practical requirement of the music copyright management is the estimation of music relative loudness, which is mostly ignored in existing music detection works. To solve this problem, we study the joint task of music detection and music relative loudness estimation. To be specific, we observe that the joint task has two characteristics, i.e., temporality and hierarchy, which could facilitate to obtain the solution. For example, a tiny fragment of audio is temporally related to its neighbor fragments because they may all belong to the same event, and the event classes of the fragment in the two tasks have a hierarchical relationship. Based on the above observation, we reformulate the joint task as hierarchical event detection and localization problem. To solve this problem, we further propose Hierarchical Regulated Iterative Networks (HRIN), which includes two variants, termed as HRIN-r and HRIN-cr, which are based on recurrent and convolutional recurrent modules. 

Read more

SOLVIT: A Reference-Free Source Localization Technique Using Majorization Minimization

We consider the problem of localizing the source using range, and range-difference measurements. Both the problems are non-convex, and non-smooth, and are challenging to solve. In this article, we develop an iterative algorithm - Source Localization Via an Iterative technique (SOLVIT) to localize the source using all the distinct range-difference measurements, i.e., without choosing a reference sensor.

Read more

Stochastic Analysis of the Filtered-x LMS Algorithm for Active Noise Control

The filtered-x least-mean-square (FxLMS) algorithm has been widely used for the active noise control. A fundamental analysis of the convergence behavior of the FxLMS algorithm, including the transient and steady-state performance, could provide some new insights into the algorithm and can be also helpful for its practical applications, e.g., the choice of the step size.

Read more