Steger, Scott Tiedeman (California Institute of Technology) “A fundamental approach to phase noise reduction in hybrid Si/III-V lasers” (2014)

You are here

Inside Signal Processing Newsletter Home Page

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

10 years of news and resources for members of the IEEE Signal Processing Society

Steger, Scott Tiedeman (California Institute of Technology) “A fundamental approach to phase noise reduction in hybrid Si/III-V lasers” (2014)

Steger, Scott Tiedeman(California Institute of Technology) “A fundamental approach to phase noise reduction in hybrid Si/III-V lasers”,  Advisor: Yariv, Amnon(2014)

Spontaneous emission into the lasing mode fundamentally limits laser linewidths. Reducing cavity losses provides two benefits to linewidth: (1) fewer excited carriers are needed to reach threshold, resulting in less phase-corrupting spontaneous emission into the laser mode, and (2) more photons are stored in the laser cavity, such that each individual spontaneous emission event disturbs the phase of the field less. Strong optical absorption in III-V materials causes high losses, preventing currently-available semiconductor lasers from achieving ultra-narrow linewidths. This absorption is a natural consequence of the compromise between efficient electrical and efficient optical performance in a semiconductor laser. Some of the III-V layers must be heavily doped in order to funnel excited carriers into the active region, which has the side effect of making the material strongly absorbing.

This thesis presents a new technique, called modal engineering, to remove modal energy from the lossy region and store it in an adjacent low-loss material, thereby reducing overall optical absorption. A quantum mechanical analysis of modal engineering shows that modal gain and spontaneous emission rate into the laser mode are both proportional to the normalized intensity of that mode at the active region. If optical absorption near the active region dominates the total losses of the laser cavity, shifting modal energy from the lossy region to the low-loss region will reduce modal gain, total loss, and the spontaneous emission rate into the mode by the same factor, so that linewidth decreases while the threshold inversion remains constant. The total spontaneous emission rate into all other modes is unchanged.

Modal engineering is demonstrated using the Si/III-V platform, in which light is generated in the III-V material and stored in the low-loss silicon material. The silicon is patterned as a high-Q resonator to minimize all sources of loss. Fabricated lasers employing modal engineering to concentrate light in silicon demonstrate linewidths at least 5 times smaller than lasers without modal engineering at the same pump level above threshold, while maintaining the same thresholds.

For details, please visit the thesis page.

Table of Contents:

SPS on Twitter

  • New SPS Webinar: On 9 March, join Mr. Sayantan Dutta when he presents "Novel Prospects of Image Restoration Inspire…
  • New SPS Webinar: On Wednesday, 8 February, join Dr. Roula Nassif for "Decentralized learning over multitask graphs"…
  • CALL FOR PAPERS: IEEE Signal Processing Magazine welcomes submissions for a Special Issue on Hypercomplex Signal an…
  • New SPS Webinar: On 15 February, join Mr. Wei Liu, Dr. Li Chen and Dr. Wenyi Zhang presenting "Decentralized Federa…
  • New SPS Webinar: On Monday, 13 February, join Dr. Joe (Zhou) Ren when he presents "Human Centric Visual Analysis -…

SPS Videos

Signal Processing in Home Assistants


Multimedia Forensics

Careers in Signal Processing             


Under the Radar