Mapping Sub-Saharan African Agriculture in High-Resolution Satellite Imagery with Computer Vision & Machine Learning (2017)

You are here

Inside Signal Processing Newsletter Home Page

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

10 years of news and resources for members of the IEEE Signal Processing Society

Mapping Sub-Saharan African Agriculture in High-Resolution Satellite Imagery with Computer Vision & Machine Learning (2017)

Debats, Stephanie Renee (Princeton University)

Advisor: Caylor, Kelly K.

Smallholder farms dominate in many parts of the world, including Sub-Saharan Africa. These systems are characterized by small, heterogeneous, and often indistinct field patterns, requiring a specialized methodology to map agricultural landcover. In this thesis, they developed a benchmark labeled data set of high-resolution satellite imagery of agricultural fields in South Africa. They presented a new approach to mapping agricultural fields, based on efficient extraction of a vast set of simple, highly correlated, and interdependent features, followed by a random forest classifier. The algorithm achieved similar high performance across agricultural types, including spectrally indistinct smallholder fields, and demonstrated the ability to generalize across large geographic areas. In sensitivity analyses, they determined multi-temporal images provided greater performance gains than the addition of multi-spectral bands.

They also demonstrated how active learning can be incorporated in the algorithm to create smaller, more efficient training data sets, which reduced computational resources, minimized the need for humans to hand-label data, and boosted performance. They designed a patch-based uncertainty metric to drive the active learning framework, based on the regular grid of a crowdsourcing platform, and demonstrated how subject matter experts can be replaced with fleets of crowdsourcing workers. Their active learning algorithm achieved similar performance as an algorithm trained with randomly selected data, but with 62% less data samples.

This thesis furthers the goal of providing accurate agricultural landcover maps, at a scale that is relevant for the dominant smallholder class. Accurate maps are crucial for monitoring and promoting agricultural production. Furthermore, improved agricultural landcover maps will aid a host of other applications, including landcover change assessments, cadastral surveys to strengthen smallholder land rights, and constraints for crop modeling and famine prediction.

Table of Contents:

New Books

SPS on Twitter

  • The Brain Space Initiative Talk Series continues this Friday, 24 September at 11:00 AM EDT when Dr. Jessica Damoise…
  • The 2022 membership year has begun! Join our community of more than 17,000 signal processing and data science profe…
  • Join us this Tuesday, 21 September for the Women in Signal Processing event at ICIP 2021! Registration available on…
  • The SPACE Webinar Series continues this Tuesday, 21 September when Dr. Bin Dong presents "Data- and Task-Driven CT…
  • Join SPS President Ahmed Tewfik on Wednesday, 22 September for the IEEE Signal Processing Society Town Hall in conj…

SPS Videos

Signal Processing in Home Assistants


Multimedia Forensics

Careers in Signal Processing             


Under the Radar