The technology we use, and even rely on, in our everyday lives –computers, radios, video, cell phones – is enabled by signal processing. Learn More »
1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.
News and Resources for Members of the IEEE Signal Processing Society
Author: Song-Wen Huang (University at Buffalo, the State University of New York) Advisor: Dimitris A. Pados
Radio frequency and underwater acoustic communications have grown rapidly in environmental monitoring, telecommunications, offshore oil exploration, and surveillance applications. Nonetheless, signals may still suffer from harsh challenges in wireless fading channels for high attenuation, multipath effect, and Doppler spread. Chirp waveforms possess characteristics to be more resilient to the above issues, so they have been utilized extensively in radar and sonar applications. However, traditional chirp signals are not orthogonal to each other and only support low data rate transmission. Therefore, there are of interests and researches to develop orthogonal chirp waveforms in high data rate transmission. The objective of this dissertation is to develop orthogonal chirp waveforms for both single carrier and multicarrier communications in radio frequency and underwater acoustic channels. Based on binary linear chirps, quasi-orthogonal chirp waveforms are designed for underwater acoustic multipath channels. In addition, M-ary orthogonal chirp modulation in coherent and non-coherent detections are proposed for underwater acoustic communications. On the other hand, orthogonal chirp waveforms are utilized as frequency subcarriers in multiuser multicarrier chirp-division multiplexing for radio frequency and underwater acoustic communications. Additionally, multiuser scenarios are adaptive in selecting parameters and strategies for enhancing performance in communication systems.
This thesis work is not only evaluated in theories and simulations, but also demonstrated its effectiveness in experiments using USRP-N210 based software-defined in-house built modems. These software-defined radio modems can provide flexibility, reconfigurability, and higher data transmission in next-generation communication networks.
Nomination/Position | Deadline |
---|---|
Call for Mentors: 2025 IEEE SPS SigMA Program - Signal Processing Mentorship Academy | 14 September 2025 |
Last Call for Nominations: Technical Committee Vice Chair and Member Positions | 15 September 2025 |
Submit Your Papers for ICASSP 2026! | 17 September 2025 |
Call for Nominations: Awards Board, Industry Board and Nominations & Elections Committee | 19 September 2025 |
Take Part in the 2025 Low-Resource Audio Codec (LRAC) Challenge | 1 October 2025 |
Meet the 2025 Candidates: IEEE President-Elect | 1 October 2025 |
Call for proposals: 2027 IEEE Conference on Artificial Intelligence (CAI) | 1 October 2025 |
Call for Nominations for the SPS Chapter of the Year Award | 15 October 2025 |
Call for Papers for 2026 LRAC Workshop | 22 October 2025 |
Submit a Proposal for ICASSP 2030 | 31 October 2025 |
Call for Project Proposals: IEEE SPS SigMA Program - Signal Processing Mentorship Academy | 2 November 2025 |
Home | Sitemap | Contact | Accessibility | Nondiscrimination Policy | IEEE Ethics Reporting | IEEE Privacy Policy | Terms | Feedback
© Copyright 2025 IEEE - All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions.
A public charity, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.