The technology we use, and even rely on, in our everyday lives –computers, radios, video, cell phones – is enabled by signal processing. Learn More »
1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.
News and Resources for Members of the IEEE Signal Processing Society
Thiagarajan, Jayaraman (Arizona State University), “Sparse methods in image understanding and computer vision”, Advisor: Prof. Andreas Spanias (2013)
Image understanding has been playing an increasingly crucial role in vision applications. Sparse models form an important component in image understanding, since the statistics of natural images reveal the presence of sparse structure. This dissertation focuses on understanding different aspects of sparse learning, thereby enhancing the use of sparse methods by incorporating tools from machine learning. By exploiting the relation of dictionary learning to 1-D subspace clustering, a multilevel dictionary learning algorithm is developed, and it is shown to outperform conventional sparse models in compressed recovery, and image denoising. In addition to building strategies for efficiently implementing 1-D subspace clustering, a discriminative clustering approach is designed to estimate the unknown mixing process in blind source separation. By exploiting the non-linear relation between the image descriptors, and allowing the use of multiple features, sparse methods can be made more effective in recognition problems. The idea of multiple kernel sparse representations is developed, and algorithms for learning dictionaries in the feature space are presented. Furthermore, a segmentation technique based on multiple kernel sparse representations is developed, and successfully applied for automated brain tumor identification. Finally, approaches to build dictionaries for local sparse coding of image descriptors are presented, and applied to object recognition and image retrieval.
For details, please contact the author or visit the thesis page.
Nomination/Position | Deadline |
---|---|
Call for Proposals: 2025 Cycle 1 Seasonal Schools & Member Driven Initiatives in Signal Processing | 17 November 2024 |
Call for Nominations: IEEE Technical Field Awards | 15 January 2025 |
Nominate an IEEE Fellow Today! | 7 February 2025 |
Call for Nominations for IEEE SPS Editors-in-Chief | 10 February 2025 |
Home | Sitemap | Contact | Accessibility | Nondiscrimination Policy | IEEE Ethics Reporting | IEEE Privacy Policy | Terms | Feedback
© Copyright 2024 IEEE - All rights reserved. Use of this website signifies your agreement to the IEEE Terms and Conditions.
A public charity, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.