Bandwidth-Constrained Decentralized Detection of an Unknown Vector Signal via Multisensor Fusion

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Bandwidth-Constrained Decentralized Detection of an Unknown Vector Signal via Multisensor Fusion

By: 
Domenico Ciuonzo; S. Hamed Javadi; Abdolreza Mohammadi; Pierluigi Salvo Rossi

Decentralized detection is one of the key tasks that a wireless sensor network (WSN) is faced to accomplish. Among several decision criteria, the Rao test is able to cope with an unknown (but parametrically-specified) sensing model, while keeping computational simplicity. To this end, the Rao test is employed in this paper to fuse multivariate data measured by a set of sensor nodes, each observing the target (or the desired) event via a nonlinear mapping function. In order to meet stringent energy/bandwidth requirements, sensors quantize their vector-valued observations into one or few bits and send them over error-prone (to model low-power communications) reporting channels to a fusion center (FC). Therein, a global (better) decision is taken via the proposed test. Its closed form and asymptotic (large-size WSN) performance are obtained, and the latter leveraged to optimize quantizers. The appeal of the proposed approach is confirmed via simulations.

SPS ON X

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel