Communication-Censored Linearized ADMM for Decentralized Consensus Optimization

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

Communication-Censored Linearized ADMM for Decentralized Consensus Optimization

Weiyu Li; Yaohua Liu; Zhi Tian; Qing Ling

In this paper, we propose a communication- and computation-efficient algorithm to solve a convex consensus optimization problem defined over a decentralized network. A remarkable existing algorithm to solve this problem is the alternating direction method of multipliers (ADMM), in which at every iteration every node updates its local variable through combining neighboring variables and solving an optimization subproblem. The proposed algorithm, called as co mmunication-censored l inearized A DMM (COLA), leverages a linearization technique to reduce the iteration-wise computation cost of ADMM and uses a communication-censoring strategy to alleviate the communication cost. To be specific, COLA introduces successive linearization approximations to the local cost functions such that the resultant computation is first-order and light-weight. Since the linearization technique slows down the convergence speed, COLA further adopts the communication-censoring strategy to avoid transmissions of less informative messages. A node is allowed to transmit only if the distance between the current local variable and its previously transmitted one is larger than a censoring threshold. COLA is proven to be convergent when the local cost functions have Lipschitz continuous gradients and the censoring threshold is summable. When the local cost functions are further strongly convex, we establish the linear (sublinear) convergence rate of COLA, given that the censoring threshold linearly (sublinearly) decays to 0. Numerical experiments corroborate with the theoretical findings and demonstrate the satisfactory communication-computation tradeoff of COLA.

SPS on Twitter

  • NEW SPS WEBINAR: On Tuesday, 13 December, join Dr. Qian Huang for "Deep Learning for All-in-Focus Imaging" - regist…
  • Join the SPS Membership Drive on Monday, 12 December, when SPS members, potential members, and the greater signal p…
  • The fundraising deadline to meet our 30 unique donations of US$10 or more is tonight — increase your impact for sig…
  • Happy ! Celebrate this global day of generosity and community action with the IEEE Foundation and…
  • The SPS Biomedical Imaging and Signal Processing Technical Committee Webinar Series continues on Tuesday, 6 Decembe…

SPS Videos

Signal Processing in Home Assistants


Multimedia Forensics

Careers in Signal Processing             


Under the Radar