IEEE Transactions on Signal Processing

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

It is well known that the convergence of Gaussian belief propagation (BP) is not guaranteed in loopy graphs. The classical convergence conditions, including diagonal dominance, walk-summability, and convex decomposition, are derived under pairwise factorizations of the joint Gaussian distribution. However, many applications run Gaussian BP under high-order factorizations, making the classical results not applicable.

Spike estimation from calcium (Ca 2+ ) fluorescence signals is a fundamental and challenging problem in neuroscience. Several models and algorithms have been proposed for this task over the past decade. Nevertheless, it is still hard to achieve accurate spike positions from the Ca 2+ fluorescence signals. While existing methods rely on data-driven methods and the physiology of neurons for modeling the spiking process, this paper exploits the nature of the fluorescence responses to spikes using signal processing.

This paper introduces a node-asynchronous communication protocol in which an agent in a network wakes up randomly and independently, collects states of its neighbors, updates its own state, and then broadcasts back to its neighbors. This protocol differs from consensus algorithms and it allows distributed computation of an arbitrary eigenvector of the network, in which communication between agents is allowed to be directed.

In this paper, we study the problem of recovering a group sparse vector from a small number of linear measurements. In the past, the common approach has been to use various “group sparsity-inducing” norms such as the Group LASSO norm for this purpose. By using the theory of convex relaxations, we show that it is also possible to use 1 -norm minimization for group sparse recovery.

In this paper, we devise a communication-efficient decentralized algorithm, named as communication-censored alternating direction method of multipliers (ADMM) (COCA), to solve a convex consensus optimization problem defined over a network. Similar to popular decentralized consensus optimization algorithms such as ADMM, at every iteration of COCA, a node exchanges its local variable with neighbors, and then updates its local variable according to the received neighboring variables and its local cost function. 

A major drawback of subspace methods for direction-of-arrival estimation is their poor performance in the presence of coherent sources. Spatial smoothing is a common solution that can be used to restore the performance of these methods in such a case at the cost of increased array size requirement. In this paper, a Hadamard product perspective of the source resolvability problem of spatial-smoothing-based subspace methods is presented.

We consider the problem of stochastic optimization with nonlinear constraints, where the decision variable is not vector-valued but instead a function belonging to a reproducing Kernel Hilbert Space (RKHS). Currently, there exist solutions to only special cases of this problem.

The theoretical basis for conventional acquisition of bandlimited signals typically relies on uniform time sampling and assumes infinite-precision amplitude values. In this paper, we explore signal representation and recovery based on uniform amplitude sampling with assumed infinite precision timing information. 

The IEEE Signal Processing Society congratulates the following recipients who will receive the 2018 IEEE Signal Processing Society paper awards for their paper published in the IEEE Transactions on Signal Processing. Presentation of the paper awards will take place at ICASSP 2019 in Brighton, U.K.

A task of major practical importance in network science is inferring the graph structure from noisy observations at a subset of nodes. Available methods for topology inference typically assume that the process over the network is observed at all nodes. However, application-specific constraints may prevent acquiring network-wide observations.

Pages

SPS Social Media

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel