IEEE Transactions on Signal Processing

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

This paper discusses greedy methods for sensor placement in linear inverse problems. We comprehensively review the greedy methods in the sense of optimizing the mean squared error (MSE), the volume of the confidence ellipsoid, and the worst-case error variance. We show that the greedy method of optimizing an MSE related cost function can find a near-optimal solution.

Linear canonical transforms (LCTs) are of importance in many areas of science and engineering with many applications. Therefore, a satisfactory discrete implementation is of considerable interest. Although there are methods that link the samples of the input signal to the samples of the linear canonical transformed output signal, no widely-accepted definition of the discrete LCT has been established.

Radio tomographic imaging (RTI) is an emerging technology to locate physical objects in a geographical area covered by wireless networks. From the attenuation measurements collected at spatially distributed sensors, radio tomography capitalizes on spatial loss fields (SLFs) measuring the absorption of radio frequency waves at each location along the propagation path.

In this paper, we propose a regular vine copula based methodology for the fusion of correlated decisions. Regular vine copula is an extremely flexible and powerful graphical model to characterize complex dependence among multiple modalities.

This paper addresses the design and analysis of feedback-based online algorithms to control systems or networked systems based on performance objectives and engineering constraints that may evolve over time. The emerging time-varying convex optimization formalism is leveraged to model optimal operational trajectories of the systems, as well as explicit local and network-level operational constraints.

In this paper, we address the problem of observability of a linear dynamical system from compressive measurements and the knowledge of its external inputs. Observability of a high-dimensional system state in general requires a correspondingly large number of measurements.

Recently, nested and coprime arrays have attracted considerable interest due to their capability of providing increased array aperture, enhanced degrees of freedom (DOFs), and reduced mutual coupling effect compared to uniform linear arrays (ULAs). These features are critical to improving the performance of direction-of-arrival estimation and adaptive beamforming. 

Graph-based representations play a key role in machine learning. The fundamental step in these representations is the association of a graph structure to a dataset. In this paper, we propose a method that finds a block sparse representation of the data by associating a graph, whose Laplacian matrix admits the sparsifying dictionary as its eigenvectors.

The state-of-the-art graph wavelet decomposition was constructed by maximum spanning tree (MST)-based downsampling and two-channel graph wavelet filter banks. In this work, we first show that: 1) the existing MST-based downsampling could become unbalanced, i.e., the sampling rate is far from 1/2, which eventually leads to low representation efficiency of the wavelet decomposition; and 2) not only low-pass components, but also some high-pass ones can be decomposed to potentially achieve better decomposition performance.

The optimal mean-reverting portfolio (MRP) design problem is an important task for statistical arbitrage, also known as pairs trading, in the financial markets. The target of the problem is to construct a portfolio of the underlying assets (possibly with an asset selection target) that can exhibit a satisfactory mean reversion property and a desirable variance property.

Pages

SPS on Twitter

  • DEADLINE EXTENDED: The 2023 IEEE International Workshop on Machine Learning for Signal Processing is now accepting… https://t.co/NLH2u19a3y
  • ONE MONTH OUT! We are celebrating the inaugural SPS Day on 2 June, honoring the date the Society was established in… https://t.co/V6Z3wKGK1O
  • The new SPS Scholarship Program welcomes applications from students interested in pursuing signal processing educat… https://t.co/0aYPMDSWDj
  • CALL FOR PAPERS: The IEEE Journal of Selected Topics in Signal Processing is now seeking submissions for a Special… https://t.co/NPCGrSjQbh
  • Test your knowledge of signal processing history with our April trivia! Our 75th anniversary celebration continues:… https://t.co/4xal7voFER

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel