Skip to main content

IEEE TCI Article

Full View Optical Flow Estimation Leveraged From Light Field Superpixel

In this paper, we present a full view optical flow estimation method for plenoptic imaging. Our method employs the structure delivered by the four-dimensional light field over multiple views making use of superpixels. These superpixels are four dimensional in nature and can be used to represent the objects in the scene as a set of slanted-planes in three-dimensional space so as to recover a piecewise rigid depth estimate.

Read more

Scene Estimation From a Swiped Image

The image blurring that results from moving a camera with the shutter open is normally regarded as undesirable. However, the blurring of the images encapsulates information that can be extracted to recover the light rays present within the scene. Given the correct recovery of the light rays that resulted in a blurred image, it is possible to reconstruct images...

Read more

PET Image Deblurring and Super-Resolution With an MR-Based Joint Entropy Prior

The intrinsically limited spatial resolution of positron emission tomography (PET) confounds image quantitation. This paper presents an image deblurring and super-resolution framework for PET using anatomical guidance provided by high-resolution magnetic resonance (MR) images. The framework relies on image-domain postprocessing of already-reconstructed PET images by means of spatially variant deconvolution stabilized by an MR-based joint entropy penalty function.

Read more

Mixed Integer Programming For Sparse Coding: Application to Image Denoising

Dictionary learning for sparse representations is generally conducted in two alternating steps-sparse coding and dictionary updating. In this paper, a new approach to solve the sparse coding step is proposed. Because this step involves an 0 -norm, most, if not all, existing solutions only provide a local or approximate solution. Instead, a real 0 optimization is considered for the sparse coding problem providing a global solution. 

Read more