1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.
In depth map super-resolution (SR), a high-resolution color image plays an important role as guidance for preventing blurry depth boundaries. However, excessive/deficient use of the color image features often causes performance degradation such as texture-copying/edge-smoothing in flat/boundary areas. To alleviate these problems, this letter presents a simple yet effective method for enhancing the performance of the SR without requiring significant modifications to the original SR network. To this end, we present a self-selective concatenation (SSC), which is a substitute for the conventional feature concatenation. In the upsampling layers of the SR network, the SSC extracts spatial and channel attention from both color and depth features such that color features can be selectively used for depth SR.
We consider the problem of detecting an unknown signal that lies in a union of subspaces (UoS) and that is observed in additive white Gaussian noise with unknown variance. The main contribution of this letter is the derivation of a detector that can accommodate a union made of nested subspaces. This detector includes the generalized likelihood ratio test (GLRT) as a special case when the subspace dimensions are all identical. It relies on the framework of multifamily likelihood ratio tests (MFLRT) and is shown by numerical examples to achieve better performance than existing detectors.
Manuscript Due: October 15, 2021
Publication Date: June 2022
CFP Document
JOB ID: 543945BRDate posted: Nov. 10, 2020City: OrlandoState: Florida
Submission Deadline: January 25, 2021
Call for Proposals Document
With the explosive growth of data, it is a heavy burden for users to store the sheer amount of data locally. Therefore, more and more organizations and individuals would like to store their data in the cloud. However, the data stored in the cloud might be corrupted or lost due to the inevitable software bugs, hardware faults and human errors in the cloud.
Monte Carlo (MC) methods are a set of fascinating computational techniques that have attracted ever-increasing attention in the last decades. They are based on the simulation of random samples that are used for diverse purposes, such as numerical integration or optimization.