Speier, William Farran, IV. (University of California, Los Angeles ) “Toward real-time communication using braincomputer interface systems” (2015)

You are here

Inside Signal Processing Newsletter Home Page

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

News and Resources for Members of the IEEE Signal Processing Society

Speier, William Farran, IV. (University of California, Los Angeles ) “Toward real-time communication using braincomputer interface systems” (2015)

Speier, William Farran, IV. (University of California, Los Angeles ) “Toward real-time communication using braincomputer interface systems” (2015), Advisor: Pouratian, Nader

The ability to communicate using language is a fundamental human function. When this ability is compromised, as it can be in neuromuscular diseases such as amyotrophic lateral sclerosis (ALS) and brainstem strokes, patients stand to lose a significant source of functional independence. Brain-computer interface (BCI) systems help restore communication to these "locked-in" patients, usually relying on P300 evoked response potentials (ERPs) to identify a target character among repetitive serial presentation of possible characters. While the so-called "P300 speller" was first described over 25 years ago, little overall progress has been made with respect to clinical implementation, with major system limitations related to practicality, speed, and accuracy. This work addresses these concerns by using machine learning techniques to optimize the system design, accelerate the character selection process, and integrate natural language domain knowledge into the classifier. This effort has involved several different projects, including selecting the optimal electrode positions using Gibbs sampling, performing unsupervised training with the Baum-Welch algorithm, and incorporating prior language knowledge using particle filtering. The result is an online system requiring only four electrodes that allows users to communicate at an average bit rate that is 75% higher than when using standard methods. These improvements can help to make the P300 speller system a more viable solution for "locked-in" patients, leading to increased functional independence and improved quality of life.

For details, please visit the thesis page.

SPS on Twitter

  • DEADLINE EXTENDED: The 2023 IEEE International Workshop on Machine Learning for Signal Processing is now accepting… https://t.co/NLH2u19a3y
  • ONE MONTH OUT! We are celebrating the inaugural SPS Day on 2 June, honoring the date the Society was established in… https://t.co/V6Z3wKGK1O
  • The new SPS Scholarship Program welcomes applications from students interested in pursuing signal processing educat… https://t.co/0aYPMDSWDj
  • CALL FOR PAPERS: The IEEE Journal of Selected Topics in Signal Processing is now seeking submissions for a Special… https://t.co/NPCGrSjQbh
  • Test your knowledge of signal processing history with our April trivia! Our 75th anniversary celebration continues:… https://t.co/4xal7voFER

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel