TIP Volume 28 Issue 6

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

June, 2019

TIP Volume 28 Issue 6

In this paper, we propose a Group-Sparse Representation-based method with applications to Face Recognition (GSR-FR). The novel sparse representation variational model includes a non-convex sparsity-inducing penalty and a robust non-convex loss function. The penalty encourages group sparsity by using an approximation of the 0 -quasinorm, and the loss function is chosen to make the algorithm robust to noise, occlusions, and disguises. 

We present an image captioning framework that generates captions under a given topic. The topic candidates are extracted from the caption corpus. A given image’s topics are then selected from these candidates by a CNN-based multi-label classifier. The input to the caption generation model is an image-topic pair, and the output is a caption of the image.

Most variational formulations for structure-texture image decomposition force the structure images to have small norm in some functional spaces and to share a common notion of edges, i.e., large-gradients or large-intensity differences. However, such a definition makes it difficult to distinguish structure edges from oscillations that have fine spatial scale but high contrast. In this paper, we introduce a new model by learning deep variational priors for structure images without explicit training data. An alternating direction method of a multiplier algorithm and its modular structure are adopted to plug deep variational priors into an iterative smoothing process.

Hashing is a promising approach for compact storage and efficient retrieval of big data. Compared to the conventional hashing methods using handcrafted features, emerging deep hashing approaches employ deep neural networks to learn both feature representations and hash functions, which have been proven to be more powerful and robust in real-world applications. 

SPS on Facebook

SPS on Twitter

SPS Videos

Signal Processing in Home Assistants


Multimedia Forensics

Careers in Signal Processing             


Under the Radar