Skip to main content

TIP Volume 28 Issue 6

A Robust Group-Sparse Representation Variational Method With Applications to Face Recognition

In this paper, we propose a Group-Sparse Representation-based method with applications to Face Recognition (GSR-FR). The novel sparse representation variational model includes a non-convex sparsity-inducing penalty and a robust non-convex loss function. The penalty encourages group sparsity by using an approximation of the 0 -quasinorm, and the loss function is chosen to make the algorithm robust to noise, occlusions, and disguises. 

Read more

Structure-Texture Image Decomposition Using Deep Variational Priors

Most variational formulations for structure-texture image decomposition force the structure images to have small norm in some functional spaces and to share a common notion of edges, i.e., large-gradients or large-intensity differences. However, such a definition makes it difficult to distinguish structure edges from oscillations that have fine spatial scale but high contrast. In this paper, we introduce a new model by learning deep variational priors for structure images without explicit training data. An alternating direction method of a multiplier algorithm and its modular structure are adopted to plug deep variational priors into an iterative smoothing process.

Read more