Skip to main content

TSP Volume 67 Issue 4

On Multisensor Detection of Improper Signals

We consider the problem of detecting the presence of a complex-valued, possibly improper, but unknown signal, common among two or more sensors (channels) in the presence of spatially independent, unknown, possibly improper and colored, noise. Past work on this problem is limited to signals observed in proper noise.

Read more

Estimation of Sparse Directional Connectivity With Expectation Maximization

Motivated by the many applications associated with estimation of sparse multivariate models, the estimation of sparse directional connectivity between the imperfectly measured nodes of a network is studied. Node dynamics and interactions are assumed to follow a multivariate autoregressive model driven by noise, and the observations are a noisy linear combination of the underlying node activities.

Read more

Residual Ratio Thresholding for Linear Model Order Selection

Model order selection (MOS) in linear regression models is a widely studied problem in signal processing. Penalized log likelihood techniques based on information theoretic criteria (ITC) are algorithms of choice in MOS problems. Recently, a number of model selection problems have been successfully solved with explicit finite sample guarantees using a concept called residual ratio thresholding (RRT).

Read more

Joint Channel Estimation and User Grouping for Massive MIMO Systems

This paper addresses the problem of joint downlink channel estimation and user grouping in massive multiple-input multiple-output (MIMO) systems, where the motivation comes from the fact that the channel estimation performance can be improved if we exploit additional common sparsity among nearby users. In the literature, a commonly used group sparsity model assumes that users in each group share a uniform sparsity pattern. In practice, however, this oversimplified assumption usually fails to hold, even for physically close users.

Read more

Sparse Antenna and Pulse Placement for Colocated MIMO Radar

Multiple-input multiple-output (MIMO) radar is known for its superiority over conventional radar due to its antenna and waveform diversity. Although higher angular resolution, improved parameter identifiability, and better target detection are achieved, the hardware costs (due to multiple transmitters and multiple receivers) and high-energy consumption (multiple pulses) limit the usage of MIMO radars in large scale networks.

Read more