Foteini Agrafioti (University of Toronto), “ECG in Biometric Recognition: Time Dependency and Application Challenges” (2011)

You are here

Inside Signal Processing Newsletter Home Page

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

News and Resources for Members of the IEEE Signal Processing Society

Foteini Agrafioti (University of Toronto), “ECG in Biometric Recognition: Time Dependency and Application Challenges” (2011)

Foteini  Agrafioti (University of Toronto), “ECG in Biometric Recognition: Time Dependency and Application Challenges”, Advisor: Dimitrios Hatzinakos (2011)

As biometric recognition becomes increasingly popular, the fear of circumvention, obfuscation and replay attacks is a rising concern. Traditional biometric modalities such as the face, the fingerprint or the iris are vulnerable to such attacks, which defeats the purpose of biometric recognition.

This thesis advocates the use the electrocardiogram (ECG) signal for human identity recognition. The ECG is a vital signal of the human body, and as such, it naturally provides liveness detection, robustness to attacks, universality and permanence. In addition, ECG inherently satisfies uniqueness requirements, because the morphology of the signal is highly dependent on the particular anatomical and geometrical characteristics of the myocardium in the heart. However, the ECG is a continuous signal, and this presents a great challenge to biometric recognition. With this modality, instantaneous variability is expected even within recordings of the same individual due to a variety of factors, including recording noise, or physical and psychological activity. While the noise and heart rate variations due to physical exercise can be addressed with appropriate feature extraction, the effects of emotional activity on the ECG signal are more obscure.

This thesis deals with this problem from an affective computing point of view. This thesis attempts to provide the necessary algorithmic and practical framework for the real-life deployment of the ECG signal in biometric recognition.

For details, please contact the author or visit the thesis page.

Open Calls

Nomination/Position Deadline
Call for Nominations: IEEE Transactions on Multimedia (TMM) Editor-in-Chief 15 June 2025
Call for Nominations: IEEE Medals & Recognitions 15 June 2025
Call For Industry Short Course Proposals is Open 15 June 2025
Call for Papers for IEEE JSTSP Special Series on Artificial Intelligence for Smart Agriculture 15 June 2025
Call for Nominations: IEEE Transactions on Multimedia (TMM) Editor-in-Chief 15 June 2025
Call For Industry Short Course Proposals is Open 15 June 2025
Call for Nominations: Fellow Evaluation Committee Member Positions 20 June 2025
Call for Nominations: Fellow Evaluation Committee Member Positions 20 June 2025
2025 IEEE SPS Scholarship Program Now Open! 30 June 2025
Call for Papers IEEE Journal of Selected Topics in Signal Processing (JSTSP) Special Series on AI in Signal & Data Science -- Toward Large Language Model (LLM) Theory and Applications (Update) 1 July 2025
ICASSP 2026 Call for Satellite Workshops 9 July 2025
Call for Nominations for Chair, Women in Signal Processing Committee (WISP) 14 July 2025
Call for Nominations for Chair, Scholarship Committee 14 July 2025
Call for Nominations for Chair, Women in Signal Processing (WISP) 14 July 2025
Call for Nominations for Chair, Scholarship Committee 14 July 2025
Nominate a Colleague for a 2025 IEEE Signal Processing Society Award 1 September 2025
Nominate a Colleague for a 2025 IEEE Signal Processing Society Award 1 September 2025
Call for Mentors: 2025 IEEE SPS SigMA Program - Signal Processing Mentorship Academy 14 September 2025

SPS Social Media

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel