Kong, Long, (University of California, Los Angeles), “RF Synthesis without Inductors” (2016)

You are here

Inside Signal Processing Newsletter Home Page

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

News and Resources for Members of the IEEE Signal Processing Society

Kong, Long, (University of California, Los Angeles), “RF Synthesis without Inductors” (2016)

Kong, Long, (University of California, Los Angeles), “RF Synthesis without Inductors” (2016) Advisor: Razavi, Behzad

Recent developments in RF receiver design have eliminated all on-chip inductors except for that used in the local oscillator. This dissertation addresses the “last inductor” problem and proposes both integer-N and fractional-N synthesizer architectures that achieve a phase noise and figure of merit (FOM) comparable to those of LC-VCO-based realizations.

A new wideband integer-N synthesizer is introduced to sufficiently suppress the ring’s phase noise. It employs an exclusive-OR (XOR) phase detector and a master-slave sampling filter (MSSF) to achieve a lock range of 2-3 GHz, a loop bandwidth equal to one half of the reference frequency, and a locked phase noise of -114 dBc/Hz up to 10-MHz offset with a 3-stage ring oscillator. Realized in 45-nm CMOS technology, the design uses a harmonic trap to suppress reference sidebands to less than -65 dBc while consuming 4 mW.

The wideband architecture has been successfully extended to a fractional-N loop as well. A ring-oscillator-based cascaded synthesizer incorporates a digital synchronous delay line and an analog noise trap to suppress the quantization noise of the Sigma-Delta modulator. Realized in 45-nm CMOS technology, the synthesizer exhibits an in-band phase noise of -109 dBc/Hz and an integrated rms jitter of 1.68 ps at 2.4 GHz with a power consumption of 6.4 mW.

Table of Contents:

SPS ON X

IEEE SPS Educational Resources

IEEE SPS Resource Center

IEEE SPS YouTube Channel