TSP Featured Articles

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

TSP Featured Articles

Recently, a novel method for developing filtering algorithms, based on the interconnection of two Bayesian filters and called double Bayesian filtering, has been proposed. In this manuscript we show that the same conceptual approach can be exploited to devise a new smoothing method, called double Bayesian smoothing.

In this work, we propose a non-parametric sequential hypothesis test based on random distortion testing (RDT). RDT addresses the problem of testing whether or not a random signal, Ξ , observed in independent and identically distributed (i.i.d) additive noise deviates by more than a specified tolerance, τ , from a fixed model, ξ0 .

Structural equation models (SEMs) and vector autoregressive models (VARMs) are two broad families of approaches that have been shown useful in effective brain connectivity studies. While VARMs postulate that a given region of interest in the brain is directionally connected to another one by virtue of time-lagged influences, SEMs assert that directed dependencies arise due to instantaneous effects...

We address a robust detection problem for MIMO radars in Gaussian noise with unknown covariance matrix, for the mismatched case where the nominal transmit (or receive) steering vector may not be aligned with the true transmit (or receive) steering vector. Subspace models are adopted for taking into account these mismatches.

Substantial progress has been made recently on developing provably accurate and efficient algorithms for low-rank matrix factorization via nonconvex optimization. While conventional wisdom often takes a dim view of nonconvex optimization algorithms due to their susceptibility to spurious local minima, simple iterative methods such as gradient descent have been remarkably successful in practice. 

Nonlinear static multiple-input multiple-output (MIMO) systems are analyzed. The matrix formulation of Bussgang's theorem for complex Gaussian signals is rederived and put in the context of the multivariate cumulant series expansion. The attenuation matrix is a function of the input signals’ covariance and the covariance of the input and output signals.

We consider the problem of decentralized consensus optimization, where the sum of n smooth and strongly convex functions are minimized over n distributed agents that form a connected network. In particular, we consider the case that the communicated local decision variables among nodes are quantized in order to alleviate the communication bottleneck in distributed optimization.

This paper studies resilient distributed estimation under measurement attacks. A set of agents each makes successive local, linear, noisy measurements of an unknown vector field collected in a vector parameter. The local measurement models are heterogeneous across agents and may be locally unobservable for the unknown parameter.

The problem of detecting a high-dimensional signal based on compressive measurements in the presence of an eavesdropper (Eve) is studied in this paper. We assume that a large number of sensors collaborate to detect the presence of sparse signals while the Eve has access to all the information transmitted by the sensors to the fusion center (FC). 

The topic of sequence design has received considerable attention due to its wide applications in active sensing. One important desired property for the design sequence is the spectral shape. In this paper, the sequence design problem is formulated by minimizing the regularized spectral level ratio subject to a peak-to-average power ratio constraint.


SPS on Twitter

  • The SPACE Webinar series continues Tuesday, 18 May at 10:00 AM EST when Dr. Rebecca Willet presents "Machine Learni… https://t.co/jdUjHQpoaf
  • Join us on Friday, 21 May at 1:00 PM EST when Dr. Amir Asif (York University) shares his journey and the importance… https://t.co/SLJGLI3K8u
  • There's still time to apply for PROGRESS! Visit https://t.co/0h4GgRY1Jr to connect with signal processing leaders a… https://t.co/dQNnkxpv8f
  • This Saturday, 8 May, join the SPS JSS Academy of Technical Education Noida Student Branch Chapter in collaboration… https://t.co/lFVmmVucvG
  • The SPACE Webinar Series continues this Tuesday, 4 May at 10:00 AM Eastern when Dr. Lei Tian presents "Modeling and… https://t.co/9emEVjOInK

SPS Videos

Signal Processing in Home Assistants


Multimedia Forensics

Careers in Signal Processing             


Under the Radar