TSP Featured Articles

You are here

Top Reasons to Join SPS Today!

1. IEEE Signal Processing Magazine
2. Signal Processing Digital Library*
3. Inside Signal Processing Newsletter
4. SPS Resource Center
5. Career advancement & recognition
6. Discounts on conferences and publications
7. Professional networking
8. Communities for students, young professionals, and women
9. Volunteer opportunities
10. Coming soon! PDH/CEU credits
Click here to learn more.

TSP Featured Articles

This paper considers and analyzes the performance of semiblind, training, and data-aided channel estimation schemes for multiple-input multiple-output (MIMO) filter bank multicarrier (FBMC) systems with offset quadrature amplitude modulation.

In this paper, we study blind channel-and-signal estimation by exploiting the burst-sparse structure of angular-domain propagation channels in massive MIMO systems. The state-of-the-art approach utilizes the structured channel sparsity by sampling the angular-domain channel representation with a uniform angle-sampling grid, a.k.a. virtual channel representation.

Linear data-detection algorithms that build on zero forcing (ZF) or linear minimum mean-square error (L-MMSE) equalization achieve near-optimal spectral efficiency in massive multi-user multiple-input multiple-output (MU-MIMO) systems. 

In this paper, we study the problem of beam alignment for millimeter wave (mmWave) communications, where a hybrid analog and digital beamforming structure is employed at the transmitter (i.e., base station), and an omni-directional antenna or an antenna array is used at the receiver (i.e., user).

Sequential Monte Carlo (SMC) methods comprise one of the most successful approaches to approximate Bayesian filtering. However, SMC without a good proposal distribution can perform poorly, in particular in high dimensions. We propose nested sequential Monte Carlo, a methodology that generalizes the SMC framework by requiring only approximate, properly weighted, samples from the SMC proposal distribution, while still resulting in a correct SMC algorithm. 

The paper derives the stability bound of the initial mean-square deviation of an adaptive filtering algorithm based on minimizing the 2 L th moment of the estimation error, with L being an integer greater than 1. The analysis is done for a time-invariant plant with even input probability density function. Dependence of the stability bound on the algorithm step-size, type of the noise distribution, signal-to-noise ratio (SNR), and L is studied.

Although massive multiple-input multiple-output (MIMO) promises high spectral efficiency, there are several issues that significantly limit the potential gain of massive MIMO, such as severe inter-cell interference, huge channel state information (CSI) overhead/delay, high cost and power consumption of RF chains, and user fairness. 

Much effort has been devoted to recovering sparse signals from one-bit measurements in recent years. However, it is still quite challenging to recover signals with high fidelity, which is desired in practical one-bit compressive sensing (1-bit CS) applications. We introduce the notion of Schur-concavity in this paper and propose to construct signals by taking advantage of Schur-Concave functions , which are capable of enhancing sparsity.

Situation-aware technologies enabled by multitarget tracking algorithms will create new services and applications in emerging fields such as autonomous navigation and maritime surveillance. The system models underlying multitarget tracking algorithms often involve unknown parameters that are potentially time-varying.

Standard interpolation techniques are implicitly based on the assumption that the signal lies on a single homogeneous domain. In contrast, many naturally occurring signals lie on an inhomogeneous domain, such as brain activity associated to different brain tissue. We propose an interpolation method that instead exploits prior information about domain inhomogeneity, characterized by different, potentially overlapping, subdomains. 


SPS on Twitter

  • The SPACE Webinar series continues Tuesday, 18 May at 10:00 AM EST when Dr. Rebecca Willet presents "Machine Learni… https://t.co/jdUjHQpoaf
  • Join us on Friday, 21 May at 1:00 PM EST when Dr. Amir Asif (York University) shares his journey and the importance… https://t.co/SLJGLI3K8u
  • There's still time to apply for PROGRESS! Visit https://t.co/0h4GgRY1Jr to connect with signal processing leaders a… https://t.co/dQNnkxpv8f
  • This Saturday, 8 May, join the SPS JSS Academy of Technical Education Noida Student Branch Chapter in collaboration… https://t.co/lFVmmVucvG
  • The SPACE Webinar Series continues this Tuesday, 4 May at 10:00 AM Eastern when Dr. Lei Tian presents "Modeling and… https://t.co/9emEVjOInK

SPS Videos

Signal Processing in Home Assistants


Multimedia Forensics

Careers in Signal Processing             


Under the Radar