Skip to main content

TSP Featured Articles

One-Bit Compressive Sensing via Schur-Concave Function Minimization

Much effort has been devoted to recovering sparse signals from one-bit measurements in recent years. However, it is still quite challenging to recover signals with high fidelity, which is desired in practical one-bit compressive sensing (1-bit CS) applications. We introduce the notion of Schur-concavity in this paper and propose to construct signals by taking advantage of Schur-Concave functions , which are capable of enhancing sparsity.

Read more

Domain-Informed Spline Interpolation

Standard interpolation techniques are implicitly based on the assumption that the signal lies on a single homogeneous domain. In contrast, many naturally occurring signals lie on an inhomogeneous domain, such as brain activity associated to different brain tissue. We propose an interpolation method that instead exploits prior information about domain inhomogeneity, characterized by different, potentially overlapping, subdomains. 

Read more

Characterization of Analytic Wavelet Transforms and a New Phaseless Reconstruction Algorithm

We obtain a characterization of all wavelets leading to analytic wavelet transforms (WT). The characterization is obtained as a byproduct of the theoretical foundations of a new method for wavelet phase reconstruction from magnitude-only coefficients. The cornerstone of our analysis is an expression of the partial derivatives of the continuous WT, which results in phase-magnitude relationships similar to the short-time Fourier transform setting and valid for the generalized family of Cauchy wavelets. 

Read more

Geometric-Algebra Adaptive Filters

This paper reformulates adaptive filters (AFs) in the framework of geometric algebra (GA), developing a complete study of the resulting geometric-algebra adaptive filters (GAAFs). They are generated by formulating the underlying minimization problem (a deterministic cost function) from the perspective of GA, a comprehensive mathematical language well suited for the description of geometric transformations.

Read more

One-Step Persymmetric GLRT for Subspace Signals

We exploit persymmetric structures to design a generalized likelihood ratio test for detecting subspace signals in homogeneous Gaussian clutter with unknown covariance matrix. The subspace model is employed to account for mismatches in the target steering vector. An exact but finite-sum expression for the probability of false alarm of the proposed detector is derived, which is verified using Monte Carlo simulations.

Read more

New Designs on MVDR Robust Adaptive Beamforming Based on Optimal Steering Vector Estimation

The robust adaptive beamforming design problem based on estimation of the signal-of-interest (SOI) steering vector is considered in the paper. The common criteria to find the best estimate of the steering vector are the beamformer output signal-to-noise-plus-interference ratio (SINR) and output power, while the constraints assume as little as possible prior inaccurate knowledge about the SOI, the propagation media, and the antenna array.

Read more