Skip to main content

TSP Featured Articles

Bilinear Recovery Using Adaptive Vector-AMP

We consider the problem of jointly recovering the vector b and the matrix C from noisy measurementsY=A(b)C+W , where A() is a known affine linear function of b (i.e., A(b)=A0 +Qi=1biAi with known matrices Ai ). This problem has applications in matrix completion, robust PCA, dictionary learning, self-calibration, blind deconvolution, joint-channel/symbol estimation, compressive sensing with matrix uncertainty, and many other tasks.

Read more

Two-Dimensional Super-Resolution via Convex Relaxation

In this paper, we address the problem of recovering point sources from two-dimensional low-pass measurements, which is known as the super-resolution problem. This is the fundamental concern of many applications such as electronic imaging, optics, microscopy, and line spectral estimations. We assume that the point sources are located in the square [0,1]2 with unknown locations and complex amplitudes.

Read more

Designing Sets of Binary Sequences for MIMO Radar Systems

In this paper, we aim at designing sets of binary sequences with good aperiodic/periodic auto- and cross-correlation functions for multiple-input multiple-output (MIMO) radar systems. We show that such a set of sequences can be obtained by minimizing a weighted sum of peak sidelobe level (PSL) and integrated sidelobe level (ISL) with the binary element constraint at the design stage.

Read more

Convergence Analysis of Gaussian Belief Propagation Under High-Order Factorization and Asynchronous Scheduling

It is well known that the convergence of Gaussian belief propagation (BP) is not guaranteed in loopy graphs. The classical convergence conditions, including diagonal dominance, walk-summability, and convex decomposition, are derived under pairwise factorizations of the joint Gaussian distribution. However, many applications run Gaussian BP under high-order factorizations, making the classical results not applicable.

Read more

Spike Estimation From Fluorescence Signals Using High-Resolution Property of Group Delay

Spike estimation from calcium (Ca 2+ ) fluorescence signals is a fundamental and challenging problem in neuroscience. Several models and algorithms have been proposed for this task over the past decade. Nevertheless, it is still hard to achieve accurate spike positions from the Ca 2+ fluorescence signals. While existing methods rely on data-driven methods and the physiology of neurons for modeling the spiking process, this paper exploits the nature of the fluorescence responses to spikes using signal processing.

Read more